Estimation of Stature in Adults: Development and Validation of a New Predictive Formula using the Tibiale Mediale-Sphyrion Tibiale Length.
New formula to estimate stature in Colombian adults
DOI:
https://doi.org/10.14306/renhyd.26.1.1456Keywords:
Anthropometry, Regression Analysis, Nutritional Status, Sports Medicine, Forensic Anthropology, Public Health Practice, Validation StudyAbstract
Introduction: Several regression equations for estimating stature have been used by health professionals in the clinical, nutritional, and forensic practice. However, there is a lack of standardization when taking measures and further population-specific equations are needed. We aimed to develop and validate an equation to estimate stature in adult population using the International Society for the Advancement of Kinanthropometry (ISAK)-standardized measurement Tibiale Mediale-Sphyrion Tibiale (TMST) length.
Methodology: A total of 188 Colombian adult women and men (23.1(4.0) years; 165.0(8.5) cm; 62.6(11.5) kg; 22.9(3.0) kg·m-2) participated in this STROBE-based cross-sectional study. Body mass, stature and TMST length were measured according to the ISAK protocol. Participants were randomly assigned to either the equation development group (n=81) or validation group (n=107). The new predictive equation of stature was derived by multiple linear regression analysis using TMST length, age and sex as predictors. Intraclass Correlation Coefficient (ICC) and Bland-Altman analysis were performed to assess agreement between the real and estimated stature.
Results: The selected predictive equation of stature (R2=0.851; SEE=4.36 cm) did not include the age since this variable did not have statistical influence on the results: 117.156 - (6.245 x Sex) + (1.482 x TMST); sex = 0 for men and 1 for women. ICC (95% CI) of 0.851 (0.788, 0.896) was obtained. The 95% limits-of-agreement between real and estimated stature ranged from 7.00 to -10.28 cm (bias -1.64 cm).
Conclusions: This new formula represents an ISAK-standardized, low-cost, and easy-to-apply method to estimate stature in population with mobility limitations (hospitalized, injured athletes, etc.) or in forensic anthropology. However, further external validation is needed.
References
(1) McGuire S. FAO, IFAD, and WFP. The State of Food Insecurity in the World 2015: Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Rome: FAO, 2015. Adv Nutr. 2015;6(5):623-4, doi: 10.3945/an.115.009936.
(2) Madden AM, Smith S. Body composition and morphological assessment of nutritional status in adults: a review of anthropometric variables. J Hum Nutr Diet. 2016;29(1):7-25, doi: 10.1111/jhn.12278.
(3) Waitzberg DL, Ravacci GR, Raslan M. Desnutrición hospitalaria. Nutrición Hospitalaria. 2011;26(2):254-64.
(4) Correia MITD, Perman MI, Waitzberg DL. Hospital malnutrition in Latin America: A systematic review. Clin Nutr. 2017;36(4):958-67, doi: 10.1016/j.clnu.2016.06.025.
(5) NutritionDay Worldwide. Country Report nutritionDay 2018 Colombia 2018 [Available from: https://www.nutritionday.org/cms/upload/pdf/6_about_nutritionDay/6.9.national_reports18/CO_country_Report_onco_2018_en.pdf.
(6) Ahmad I. ABCDE of Community Nutritional Assessment. Gomal Journal of Medical Sciences. 2019;17, doi: 10.46903/gjms/17.02.2059.
(7) Bonilla DA, De León LG, Alexander-Cortez P, Odriozola-Martínez A, Herrera-Amante CA, Vargas-Molina S, et al. Simple anthropometry-based calculations to monitor body composition in athletes: Scoping review and reference values. Nutr Health. 2021:2601060211002941, doi: 10.1177/02601060211002941.
(8) Woolcott OO, Bergman RN. Relative fat mass (RFM) as a new estimator of whole-body fat percentage ─ A cross-sectional study in American adult individuals. Sci Rep. 2018;8:10980, doi: 10.1038/s41598-018-29362-1.
(9) Guzmán-León AE, Velarde AG, Vidal-Salas M, Urquijo-Ruiz LG, Caraveo-Gutiérrez LA, Valencia ME. External validation of the relative fat mass (RFM) index in adults from north-west Mexico using different reference methods. PLoS One. 2019;14(12):e0226767, doi: 10.1371/journal.pone.0226767.
(10) Woolcott OO, Bergman RN. Relative Fat Mass as an estimator of whole-body fat percentage among children and adolescents: A cross-sectional study using NHANES. Sci Rep. 2019;9:15279, doi: 10.1038/s41598-019-51701-z.
(11) Ferrinho C, Bello C, Santos FS, Capitao R, Ferreira R, Limbert C, et al. Relative fat mass correlates better than BMI with total body fat - experience of an obesity clinic. Endocrine Abstracts, vol. 63. Bioscientifica; 2019.
(12) Fedewa MV, Russell AR, Nickerson BS, Fedewa MP, Myrick JW, Esco MR. Relative accuracy of body adiposity index and relative fat mass in participants with and without down syndrome. Eur J Clin Nutr. 2019;73(8):1117-21, doi: 10.1038/s41430-018-0351-3.
(13) Rabito EI, Vannucchi GB, Suen VMM, Castilho Neto LL, Marchini JS. Weight and height prediction of immobilized patients. Rev Nutr. 2006;19:655-61, doi: 10.1590/S1415-52732006000600002.
(14) Rabito EI, Mialich MS, Martínez EZ, García RWD, Jordao AA, Marchini JS. Validation of predictive equations for weight and height using a metric tape. Nutr Hosp. 2008;23(6):614-8.
(15) Lahner CR, Kassier SM, Veldman FJ. Arm-associated measurements as estimates of true height in black and white young adults of both genders: an exploratory study, Pietermaritzburg, KwaZulu-Natal, South Africa. South African Journal of Clinical Nutrition. 2016;29(3):122-6.
(16) Stevenson RD. Use of segmental measures to estimate stature in children with cerebral palsy. Arch Pediatr Adolesc Med. 1995;149(6):658-62, doi: 10.1001/archpedi.1995.02170190068012.
(17) Stevenson RD. Use of segmental measures to estimate stature in children with cerebral palsy. Arch Pediatr Adolesc Med. 1995;149(6):658-62, doi: 10.1001/archpedi.1995.02170190068012.
(18) Chumpathat N, Rangsin R, Changbumrung S, Soonthornworasiri N, Durongritichai V, Kwanbunjan K. Use of knee height for the estimation of body height in Thai adult women. Asia Pac J Clin Nutr. 2016;25(3):444-51, doi: 10.6133/apjcn.092015.05.
(19) Chumlea WC, Guo SS, Steinbaugh ML. Prediction of stature from knee height for black and white adults and children with application to mobility-impaired or handicapped persons. J Am Diet Assoc. 1994;94(12):1385-8, 1391; quiz 1389-90, doi: 10.1016/0002-8223(94)92540-2.
(20) Mendivil Alvarado H, Villegas Valle RC, Díaz Zavala RG, Antunez Roman LE, Valencia ME. Modelo para la estimación de la talla de pie en adultos mexicanos de 20-59 años basado en la longitud rodilla-talón. Nutrición Hospitalaria. 2015;32(6):2855-61, doi: 10.3305/nh.2015.32.6.9850.
(21) Guzmán Hernández C, Reinoza Calderón G, Hernández Hernández RA. Estimación de la estatura a partir de la longitud de pierna medida con cinta métrica. Nutrición Hospitalaria. 2005;20(5):358-63.
(22) Weidauer L, Wey H, Slater H, Moyer-Mileur L, Specker B. Estimation of length or height in infants and young children using ulnar and lower leg length with dual-energy X-ray absorptiometry validation. Dev Med Child Neurol. 2014;56(10):995-1000, doi: 10.1111/dmcn.12491.
(23) Hernández R, Herrera H. Longitud de la pierna medida con cinta métrica: Una alternativa para estimar la estatura. Antropo, ISSN 1578-2603, Vol 21, 2010, pags 1-8. 2010.
(24) Angel Arango LA, Zamora Jaimes JE. The prediction of size from the knee-external malleolus distance. Nutricion Hospitalaria. 1995;10(4):199-205.
(25) Instituto Colombiano de Bienestar Familiar. Guía Técnica del Componente de Alimentación y Nutrición para Población en Discapacidad 2016 [Available from: https://www.icbf.gov.co/sites/default/files/procesos/g7.pp_guia_tecnica_de_alimentacion_y_nutricion_para_poblacion_en_discapacidad_v1.pdf.
(26) Esparza-Ros F, Vaquero-Cristóbal R, Marfell-Jones M. International Standards for Anthropometric Assessment. Murcia, Spain: The International Society for the Advancement of Kinanthropometry; 2019.
(27) Norton K, Eston R. Kinanthropometry and Exercise Physiology: Routledge; 2018.
(28) von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495-9, doi: 10.1016/j.ijsu.2014.07.013.
(29) World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-4, doi: 10.1001/jama.2013.281053.
(30) Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-74.
(31) Bunce C. Correlation, agreement, and Bland-Altman analysis: statistical analysis of method comparison studies. Am J Ophthalmol. 2009;148(1):4-6, doi: 10.1016/j.ajo.2008.09.032.
(32) Benjumea MV, Estrada-Restrepo A, Curcio CL. Ecuaciones para estimar la talla de ancianos colombianos mediante la altura de la rodilla. Biomedica. 2019;39(4):639-46, doi: 10.7705/biomedica.4820.
(33) Mantilla Hernández JC, Cárdenas Durán N, Jácome Bohórquez JM. Estimación de la Talla a Partir de la Medida de la Tibia en Población Colombiana. International Journal of Morphology. 2009;27(2):305-9, doi: 10.4067/S0717-95022009000200004.
(34) Saco-Ledo G, Porta J, Duyar I, Mateos A. Stature estimation based on tibial length in different stature groups of Spanish males. Forensic Sci Int. 2019;304:109973, doi: 10.1016/j.forsciint.2019.109973.
(35) Cardemil F. [Comparison analysis and applications of the Bland-Altman method: correlation or agreement?]. Medwave. 2017;17(1):e6852, doi: 10.5867/medwave.2017.01.6852.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Diego A. Bonilla, Laura Castrillón-Ruíz, Luisa F. Soto-Arenas, Mayra A. Márquez-Rodríguez, Richard B. Kreider, Jorge L. Petro
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.