Correlation between CUN-BAE, Body Mass Index, and Waist Circumference in Chilean Adults: Analysis of data from the 2016-17 Chilean National Health Survey
DOI:
https://doi.org/10.14306/renhyd.28.2.2076Keywords:
Body composition, fat mass, Body Mass Index (BMI), Waist Circumference, ObesityAbstract
Introduction: Given the complexity and costs involved in measuring body fat percentage in humans, there is a quest to establish new methods for determining this variable. The CUN-BAE equation utilizes simple indicators such as sex and Body Mass Index (BMI) to estimate body fat percentage. The objective was to determine the degree of correlation between the percentage of body fat obtained through the CUN-BAE equation, BMI, and waist circumference (WC) in Chilean adults from the interviewed sample of the National Health Survey (CNHS) 2016-2017.
Methods: 5,583 participants of the CNHS 2016-2017 were included, where specific anthropometric measurements were taken to determine BMI, nutritional status, and WC. In addition, the percentage of fat mass was determined according to the CUN-BAE equation. The correlation between BMI, WC, and CUN-BAE was analyzed using the Pearson correlation coefficient (r).
Results: BMI and percentage of fat mass according to the CUN-BAE equation presented a strong correlation both in men (r=0.924, p<0.0001) and women (r=0.929, p<0.0001). Women presented a higher correlation between CUN-BAE and BMI and WC than men. In the case of the correlation between WC and percentage of body fat mass according to CUN-BAE, a strong correlation was also observed for both men (r=0.817, p<0.0001) and women (r=0.812, p<0.0001).
Conclusions: The CUN-BAE equation to determine the percentage of body fat has a strong correlation with respect to BMI and WC. Further studies are required to evaluate the predictive capacity of CUN-BAE for chronic noncommunicable diseases in the Chilean population.
References
Bray GA, Kim KK, Wilding JPH, World Obesity F. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev. 2017;18(7):715-23, doi: 10.1111/obr.12551.
FAO. Panorama de la seguridad alimentaria y nutricional. América Latina y el Caribe. Food and Agriculture Organization of the United Nations (FAO). 2016.
MINSAL. Encuesta Nacional de Salud 2016-2017. Primeros resultados. Ministerio de Salud (MINSAL) - Gobierno de Chile. 2017.
OCDE. Estudios de la OCDE sobre Salud Pública: Chile. Hacia un futuro más sano. Evaluación y recomendaciones. Ministerio de Salud (MINSAL) - Gobierno de Chile. 2019.
World Obesity Atlas. World Obesity Federation. London. 2022.
Celik O, Yildiz BO. Obesity and physical exercise. Minerva Endocrinol (Torino). 2021;46(2):131-44, doi: 10.23736/S2724-6507.20.03361-1.
Peng Q, Feng Z, Cai Z, Liu D, Zhong J, Zhao H, et al. The relationship between the CUN-BAE body fatness index and incident diabetes: a longitudinal retrospective study. Lipids Health Dis. 2023;22(1):21, doi: 10.1186/s12944-023-01784-5.
Kunz HE, Hart CR, Gries KJ, Parvizi M, Laurenti M, Dalla Man C, et al. Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity. Am J Physiol Endocrinol Metab. 2021;321(1):E105-E21, doi: 10.1152/ajpendo.00070.2021.
Gadde KM, Martin CK, Berthoud HR, Heymsfield SB. Obesity: Pathophysiology and Management. J Am Coll Cardiol. 2018;71(1):69-84, doi: 10.1016/j.jacc.2017.11.011.
WHO Consultation. Obesity: Preventing and managing the global epidemic - Introduction. Obesity: Preventing and Managing the Global Epidemic. 2000;894:1-253.
Ortega FB, Sui X, Lavie CJ, Blair SN. Body Mass Index, the Most Widely Used But Also Widely Criticized Index: Would a Criterion Standard Measure of Total Body Fat Be a Better Predictor of Cardiovascular Disease Mortality? Mayo Clin Proc. 2016;91(4):443-55, doi: 10.1016/j.mayocp.2016.01.008.
Shepherd JA, Ng BK, Sommer MJ, Heymsfield SB. Body composition by DXA. Bone. 2017;104:101-5, doi: 10.1016/j.bone.2017.06.010.
Scafoglieri A, Clarys JP. Dual energy X-ray absorptiometry: gold standard for muscle mass? J Cachexia Sarcopenia Muscle. 2018;9(4):786-7, doi: 10.1002/jcsm.12308.
Gomez-Ambrosi J, Silva C, Catalan V, Rodriguez A, Galofre JC, Escalada J, et al. Clinical usefulness of a new equation for estimating body fat. Diabetes Care. 2012;35(2):383-8, doi: 10.2337/dc11-1334.
Ding C, Chan Z, Magkos F. Lean, but not healthy: the 'metabolically obese, normal-weight' phenotype. Curr Opin Clin Nutr Metab Care. 2016;19(6):408-17, doi: 10.1097/MCO.0000000000000317.
Geng S, Chen X, Bai K, Ding J, Li H, Shi S. Association of the Clínica Universidad de Navarra-Body Adiposity Estimator With Type 2 Diabetes: A Retrospective Cohort Study. Int J Public Health. 2023;68:1606063, doi: 10.3389/ijph.2023.1606063.
MINSAL. Manual de aplicación de cuestionario F2, Encuesta Nacional de Salud 2016-2017. Ministerio de Salud (MINSAL) - Gobierno de Chile. 2016.
MINSAL. Sabana Datos oficial ENS 2016-2017. Ministerio de Salud (MINSAL) - Gobierno de Chile. 2018.
MINSAL. Informe Encuesta Nacional de Salud 2016-2017. Caracterización de la muestra. Ministerio de Salud (MINSAL) - Gobierno de Chile. 2018.
MINSAL. Guías Alimentarias para la Población Chilena. 2013.
Olivares S, Zacarías I, González CG, Villalobos E. Proceso de formulación y validación de las guías alimentarias para la población chilena. Rev chil nutr. 2013;40:262-8, doi: 10.4067/S0717-75182013000300008.
Armstrong T, Bull F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). J Public Health. 2006;14(2):66-70, doi: 10.1007/s10389-006-0024-x.
Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv Exp Med Biol. 2017;960:1-17, doi: 10.1007/978-3-319-48382-5_1.
Davila-Batista V, Molina AJ, Vilorio-Marques L, Lujan-Barroso L, de Souza-Teixeira F, Olmedo-Requena R, et al. Net contribution and predictive ability of the CUN-BAE body fatness index in relation to cardiometabolic conditions. Eur J Nutr. 2019;58(5):1853-61, doi: 10.1007/s00394-018-1743-9.
Ares Blanco J, Valdes Hernandez S, Botas Cervero P, Sanchez-Ragnarsson C, Pujante Alarcon P, Menendez-Torre E, et al. Estimation of body fat mass using the CUN-BAE index and mortality risk by sex in the Asturias Study cohort. Endocrinol Diabetes Nutr (Engl Ed). 2019;66(8):487-94, doi: 10.1016/j.endinu.2019.02.008.
Vinknes KJ, Nurk E, Tell GS, Sulo G, Refsum H, Elshorbagy AK. The relation of CUN-BAE index and BMI with body fat, cardiovascular events and diabetes during a 6-year follow-up: the Hordaland Health Study. Clin Epidemiol. 2017;9:555-66, doi: 10.2147/CLEP.S145130.
Mill-Ferreyra E, Cameno-Carrillo V, Saul-Gordo H, Cami-Lavado MC. [Estimation of the percentage of body fat based on the body mass index and the abdominal circumference: Palafolls Formula]. Semergen. 2019;45(2):101-8, doi: 10.1016/j.semerg.2018.04.007.
Davila-Batista V, Molina AJ, Fernandez-Villa T, Romaguera D, Perez-Gomez B, Vilorio-Marques L, et al. The Relation of CUN-BAE Index with Body Mass Index and Waist Circumference in Adults Aged 50 to 85 Years: The MCC-Spain Study. Nutrients. 2020;12(4), doi: 10.3390/nu12040996.
Martin V, Davila-Batista V, Castilla J, Godoy P, Delgado-Rodriguez M, Soldevila N, et al. Comparison of body mass index (BMI) with the CUN-BAE body adiposity estimator in the prediction of hypertension and type 2 diabetes. BMC Public Health. 2016;16:82, doi: 10.1186/s12889-016-2728-3.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Miquel Martorell, Danahe Barrientos, Karina Ramírez-Alarcón, Gabriela Nazar, Claudia Troncoso-Pantoja, Yeny Concha-Cisternas, Felipe Díaz-Toro, Ana Maria Leiva, Solange Parra-Soto, Fanny Petermann-Rocha, Carlos Celis-Morales, Ana Maria Labraña
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.