Fortification iron and enodgenous zinc bioaccessibility from commercial fortified spaguettis

Authors

  • María Gimena Galán Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).
  • Emilce Llopart Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Universidad del Centro Educativo Latinoamericano (UCEL), Rosario.
  • Emilia Tissera Universidad del Centro Educativo Latinoamericano (UCEL), Rosario.
  • Anabela Alladio Universidad del Centro Educativo Latinoamericano (UCEL), Rosario.
  • Silvina R Drago Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

DOI:

https://doi.org/10.14306/renhyd.18.2.53

Keywords:

Fortified food, Cooking, Nutritive Value, Mineral bioaccessibility, Potential supply

Abstract

Introduction: The aims were to assess the bioaccessibility and Potential Supply (PS) of Fe and Zn from Commercial Fortified Spaghettis (CFS), and the relationship between cooking time and losses of solids, Fe and Zn of these samples.

Material and Methods: Four samples of different trades were analyzed. Solid, Fe, and Zn losses were evaluated at to cooking times (optimum cooking time and optimum time plus 10 min overcooking). Fe and Zn bioaccessibility was estimated through mineral dialyzability. Potential Supply (PS) was determined as the product of mineral concentration and dialyzability.

Results: Solids losses were lower than 7%, still with overcooking. Three of the four fortified samples did not meet the declared values of Fe content. There were high losses of Fe and Zn during cooking, which increased when extended cooking time (from 43.7% to 64.7% for Fe, and from 7.7% to 15.2% for Zn). Fe losses (fortification mineral), being greater than Zn (endogenous mineral). Fe and Zn bioaccessibility were very low (0.82±0.27% and 0.90±0.45%, respectively) and the PS of 80 g portion of CFS only cover approximately 0.65% and 0.71% of Fe and Zn requirements, respectively.

Conclusions: The results show that the fortification of spaghetti makes little contribution to meet the requirements of the analyzed minerals.

References

WHO/UNICEF/UNU. Iron Deficiency Anaemia, Assessment, Prevention, and Control.WHO, Geneva 2001.

Harvey L. Mineral bioavailability. Nutr Food Sci. 2001; 31(4): 179-182.

Hurrell RF, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010; 91(5): 1461-7.

Tontisirin K, Nantel G, Bhattacharjee L. Food-based strategies to meet the challenges of micronutrient malnutrition in the developing world. Proc Nutr Soc. 2002 ; 61(2): 243-50.

David LJ. Fortificación de harinas de trigo en América Latina y región del Caribe. Rev Chil Nutr 2004, 31(3): 336-47.

Sabanis D, Dokastakis G. New formulations for the production of pasta (lasagna) products enriched with chickpea flour. J Sci Food Agric. 2004; 63: 66-73.

Torres A, Frias J, Granito M, Vidal-Valverde C. Fermented pigeon pea (Cajanus Cajan) ingredients in pastas products. J Agric Food Chem. 2006; 54(18): 6685-91.

Chillo S, Laverse J, Falcone PM, Nobile MAD. Quality of spaghetti in base amaranthus wholemeal flour added with quinoa, broad bean and chick pea. J Food Eng. 2008; 84(1): 101-7.

Galán MG, González RJ, Drago SR. Perfil nutricional y dializabilidad de minerales de alimentos de interés social. Rev Esp Nutr Hum Diet. 2013; 17(1): 3-9.

AOAC. Association Official Agricultural Chemists. Official Methods of Analysis, 17th edn. Washington, DC 2002.

Miller DD, Schricker BR, Rasmussen RR, Van Campen D. An in vitro method for estimation of iron availability from meals. Am J Clin Nutr. 1981; 34(10): 2248-56.

Drago SR, Binaghi MJ, Valencia ME. Effect of gastric digestion pH on iron, zinc and calcium availability from preterm and term starting infant formulas. J Food Sci. 2005; 70(2): 107-112.

Resolución Técnica MERCOSUR 47/03. Disponible en: http://www.puntofocal.gov.ar. [consulta: Octubre de 2013].

Estévez AM, Escobar BA, Ugarte V. Utilización de cotiledones de algarrobo (Prosopis chilensis) en la elaboración de barras de cereales. Arch Latinoam Nutr. 2000; 50(2): 148-51.

Cannella C, Pinto A. The nutritional value of pasta. Tecn Mol Int. 2006; 57: 93-94.

Hoseney C. Principios de Ciencia y Tecnología de los Cereales. Zaragoza, España: Acribia; 1991.

Dyner L, Drago SR, Piñeiro A, Sanchez H, González R, Villaamil E, et al. Composición y aporte potencial de hierro, calcio y zinc de panes y fideos elaborados con harinas de trigo y amaranto. Arch Latinoam Nutr. 2007; 57(1): 69-78.

Ziegler EE y Filer LJ. Conocimientos Actuales sobre nutrición, 7º ed. Washinton DC: OMS. ILSI Pub Cientif; 1990.

Monsen ER. Estimation of available dietary iron. Am J Nutr. 1978; 31(1): 134-41.

Martín de Portela ML. Vitaminas y minerales en nutrición, 1º ed. Buenos Aires: Libreros López Editores; 1993.

Published

2014-03-17

How to Cite

Galán, M. G., Llopart, E., Tissera, E., Alladio, A., & Drago, S. R. (2014). Fortification iron and enodgenous zinc bioaccessibility from commercial fortified spaguettis. Spanish Journal of Human Nutrition and Dietetics, 18(2), 74–80. https://doi.org/10.14306/renhyd.18.2.53