Are nanoparticulated food colours safe? Use of the in vivo biological model Caenorhabditis elegans to evaluate their acute toxicity

Authors

  • Samuel Furones Hernández Estudiante de Doctorado. Universitat Politècnica de València
  • Raúl Grau Meló Departamento de Tecnología de Alimentos, Instituto de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, València, España
  • José Manuel Barat Baviera Departamento de Tecnología de Alimentos, Instituto de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, València, España
  • Samuel Verdú Amat Departamento de Tecnología de Alimentos, Instituto de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, València, España

DOI:

https://doi.org/10.14306/renhyd.28.4.2333

Keywords:

Food colours, Nanoparticles, Stability, Caenorhabditis elegans, Toxicological properties

Abstract

Introduction: This study explores the toxicological effects of silver nanoparticles (AgNPs) and iron oxide nanoparticles (Fe2O3NPs), which are used as food colorants (E-174 and E-172, respectively), when they come into contact with an aqueous medium that simulates food matrices. For this purpose, the in vivo biological model Caenorhabditis elegans was used.

Methods: The impact of NPs was evaluated on physicochemical parameters, such as particle size, zeta potential, and electrical conductivity. Biological parameters in C. elegans were also analyzed, including lethality, oxidative stress, and apoptosis or cell death.

Results: Physicochemical analysis revealed significant changes in the properties of the NPs upon contact with the aqueous medium. The AgNPs exhibited greater stability, as well as an increase in their solubilization. Fe2O3NPs exhibited higher toxicity compared to AgNPs, showing higher lethality rates and increased oxidative stress. The analysis of cell apoptosis further highlighted their toxic effects.

Conclusions: The results of the study demonstrated the critical role of the physicochemical characteristics of NPs and their biological interactions. Variations in the stability of NPs can increase their toxic potential when used as food additives. These findings require thorough investigation to better understand the behaviour of NPs in food matrices and the associated health risks, thereby ensuring consumer safety.

Funding: Recovery, Transformation and Resilience Plan of the Valencian Community, through the "Investigo Program" project. European project "NAMS4NANO: Integration of Results from New Approach Methodologies in Chemical Risk Assessments: Case Studies Addressing Considerations at the Nanometric Scale", supported by the European Food Safety Agency (EFSA).

References

(1) EUR-Lex - 02008R1333-20231029 - EN - EUR-Lex. [Citado 15 de agosto 2024] Disponible en: https://eur-lex.europa.eu/eli/reg/2008/1333/2023-10-29

(2) Boey A, Ho HK All Roads Lead to the Liver: Metal Nanoparticles and Their Implications for Liver Health. Small. 2020;16(21), doi: 10.1002/smll.202000153.

(3) Jafarizadeh-Malmiri H, Sayyar Z, Anarjan N, Berenjian A Nanobiotechnology in food: Concepts, applications and perspectives. Nanobiotechnology in Food: Concepts, Applications and Perspectives. 2019:1-155, doi: 10.1007/978-3-030-05846-3.

(4) Kravanja G, Primožič M, Knez Ž, Leitgeb M Chitosan-based (Nano)materials for Novel Biomedical Applications. Molecules. 2019;24(10), doi: 10.3390/MOLECULES24101960.

(5) Levard C, Hotze EM, Lowry G V., Brown GE Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environ Sci Technol. 2012;46(13):6900-14, doi: 10.1021/es2037405.

(6) Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R Nanoparticles‐induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing). 2023;4(4), doi: 10.1002/mco2.327.

(7) Kawata K, Osawa M, Okabe S In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol. 2009;43(15):6046-51, doi: 10.1021/ES900754Q/SUPPL_FILE/ES900754Q_SI_001.PDF.

(8) Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, et al. Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett. 2011;201(1):27-33, doi: 10.1016/J.TOXLET.2010.12.001.

(9) Könczöl M, Ebeling S, Goldenberg E, Treude F, Gminski R, Gieré R, et al. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: Role of ROS, JNK, and NF-κB. Chem Res Toxicol. 2011;24(9):1460-75, doi: 10.1021/TX200051S/ASSET/IMAGES/MEDIUM/TX-2011-00051S_0003.GIF.

(10) Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, et al. Twenty-Eight-Day Oral Toxicity, Genotoxicity, and Gender-Related Tissue Distribution of Silver Nanoparticles in Sprague-Dawley Rats. Inhal Toxicol. 2008;20(6):575-83, doi: 10.1080/08958370701874663.

(11) Scientific opinion on the re‐evaluation of silver (E 174) as food additive. EFSA Journal. 2016;14(1), doi: 10.2903/j.efsa.2016.4364.

(12) Scientific Opinion on the re‐evaluation of iron oxides and hydroxides (E 172) as food additives. EFSA Journal. 2015;13(12), doi: 10.2903/j.efsa.2015.4317.

(13) Gubert P, Gubert G, Oliveira RC de, Fernandes ICO, Bezerra IC, Ramos B de, et al. Caenorhabditis elegans as a Prediction Platform for Nanotechnology-Based Strategies: Insights on Analytical Challenges. Toxics. 2023;11(3), doi: 10.3390/TOXICS11030239.

(14) Lee KH, Aschner M A Simple Light Stimulation of Caenorhabditis elegans. Curr Protoc Toxicol. 2016;67(1), doi: 10.1002/0471140856.tx1121s67.

(15) Hunt PR The C. elegans model in toxicity testing. Journal of Applied Toxicology. 2017;37(1):50-9, doi: 10.1002/jat.3357.

(16) Fuentes C, Verdú S, Fuentes A, Ruiz MJ, Barat JM Effects of essential oil components exposure on biological parameters of Caenorhabditis elegans. Food and Chemical Toxicology. 2022;159:112763, doi: 10.1016/J.FCT.2021.112763.

(17) Lant, B, Derry, W-B Fluorescent Visualization of Germline Apoptosis in Living Caenorhabditis Elegans. Cold Spring Harb. 2014;8–20, doi:10.1101/pdb.prot080226

(18) Kaptay G On the size and shape dependence of the solubility of nano-particles in solutions. Int J Pharm. 2012;430(1-2):253-7, doi: 10.1016/j.ijpharm.2012.03.038.

(19) Polte J Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm. 2015;17(36):6809-30, doi: 10.1039/C5CE01014D.

(20) H. Muller R, Shegokar R, M. Keck C 20 Years of Lipid Nanoparticles (SLN & NLC): Present State of Development & Industrial Applications. Curr Drug Discov Technol. 2011;8(3):207-27, doi: 10.2174/157016311796799062.

(21) Mer VK La Nucleation in Phase Transitions. Ind Eng Chem. 1952;44(6):1270-7, doi: 10.1021/ie50510a027.

(22) Ostwald W Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Zeitschrift für Physikalische Chemie. 1900;34U(1):495-503, doi: 10.1515/zpch-1900-3431.

(23) Zhang X-F, Liu Z-G, Shen W, Gurunathan S Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci. 2016;17(9):1534, doi: 10.3390/ijms17091534.

(24) Wang YQ, Liang WS, Geng CY Coalescence Behavior of Gold Nanoparticles. Nanoscale Res Lett. 2009;4(7):684, doi: 10.1007/s11671-009-9298-6.

(25) Lu GW, Gao P Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. Handbook of Non-Invasive Drug Delivery Systems. Elsevier; 2010. p. 59-94.

(26) Liu H, Zhang H, Wang J, Wei J Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetics analysis. Arabian Journal of Chemistry. 2020;13(1):1011-9, doi: 10.1016/j.arabjc.2017.09.004.

(27) Baalousha M Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Science of The Total Environment. 2009;407(6):2093-101, doi: 10.1016/j.scitotenv.2008.11.022.

(28) Choi O, Hu Z Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria. Environ Sci Technol. 2008;42(12):4583-8, doi: 10.1021/es703238h.

(29) Rossbach LM, Oughton DH, Maremonti E, Coutris C, Brede DA In vivo assessment of silver nanoparticle induced reactive oxygen species reveals tissue specific effects on cellular redox status in the nematode Caenorhabditis elegans. Science of The Total Environment. 2020;721:137665, doi: 10.1016/j.scitotenv.2020.137665.

(30) Luo X, Xu S, Yang Y, Zhang Y, Wang S, Chen S, et al. A novel method for assessing the toxicity of silver nanoparticles in Caenorhabditis elegans. Chemosphere. 2017;168:648-57, doi: 10.1016/j.chemosphere.2016.11.011.

Published

2024-10-25

How to Cite

Furones Hernández, S., Grau Meló, R., Barat Baviera, J. M., & Verdú Amat, S. (2024). Are nanoparticulated food colours safe? Use of the in vivo biological model Caenorhabditis elegans to evaluate their acute toxicity. Spanish Journal of Human Nutrition and Dietetics. https://doi.org/10.14306/renhyd.28.4.2333

Issue

Section

Research articles