Nutritional profile and mineral dializability from social foods
DOI:
https://doi.org/10.14306/renhyd.17.1.2Keywords:
Social Food, mineral bioaccesibility, protein digestibility, nutritional profileAbstract
Introduction: the aims were to assess the composition, protein digestibility (PD) and bioaccesibility of Fe, Zn and Ca (before and after cooking) of Social Foods (SF).
Material and Methods: four SF were analyzed. The composition was determined according to AOAC (2000). Mineral bioaccesibility was estimated by the percentage of dialysated mineral after a digestion process that simulates gastrointestinal processes. Potential contribution (PC) of each mineral was established as the product of its concentration and dialyzability. The PD was determined by enzymatic digestion by measuring the increase of non-protein nitrogen.
Results: the SF composition was as follows: proteins: 11.53-24.67g/100g; fat: 4.31-8.46g/100g; ash: 2.95-3.66g/100g; dietary fiber: 0.6-4g/100g; carbohydrates: 49.38-60.37g/100g; energy: 366.05-389.38Kcal/100g; Fe: 28.91-60.41mg/kg; Zn: 5.99-33.08mg/Kg; Ca: 1127.69-417.39mg/kg; Na: 2517.21-13217.50mg/Kg. The PD ranged from 58 to 92%. Cooked foods presented a Fe and Zn bioaccesibility lesser than raw foods, which can be attributed in the case of Fe to the loss of ascorbic acid occurring during cooking process, and for Zn to the interaction of Zn with food matrix components that hinder its release during the digestive process. According to PC, the FSI cover between 10-26%, 6-8% and 2-34% of Fe, Ca and Zn requirements, respectively.
Conclusions: Social Foods have a good nutritional balance. Mineral bioaccesibility was very good and was reduced slightly by cooking.
References
Sánchez HD, Osella CA, De La Torre MA, González RJ, Sbodio OA. Estudio nutricional relativo a proteína, energía y calcio en niños que concurren a comedor escolar. Arch Latinoam Nutr. 1999; 49(3): 218-222.
Harvey L. Mineral bioavability. Nutr Food Sci. 2001; 31: 179-82.
Bueno L. Efeito do triglicerídeo de cadeia média, fibra e cálcio na disponibilidade de ferro, magnésio e zinco em uma formulação de alimentação enteral com otimização conjunta para os três minerais. Ciênc Tecnol Aliment. 2008; 28: 125-134.
Hurrel RF, Egli I. Iron bioavailability and dietary reference values. Am J Clin Nutr. 2010; 91(Suppl. 5):1461-7.
O’Dell BL. Bioavailability of trace elements. Nutr Res. 1984; 42:301-306.
Ummadi P, Chenoweth WL, Uebersax MA. The influence of extrusion processing on iron dialyzability, phytates and tannins in legumes. J Food Process Press. 1995; 19(2): 119-31.
Schricker BR, Miller DD, Rasmussen RR, Van Campen D. A comparison of in vivo and in vitro methods for determining availability of iron from meals. Am J Clin Nutr. 1981; 34(10):2257-63.
Berganza BF, Moran AW, Rodriguez G, Coto NM, Santa María M, Bressani R. Effect of variety and location on the total fat, fatty acids and squalene content of amaranth. Plant Food Hum Nutr. 2003; 58(3): 1-6.
Association Official Agricultural Chemists (AOAC). Official Methods of Analysis, 17th edn. Washington, DC; 2002.
Maynard LA. The Atwater system of calculating the caloric value of diets. J Nutr. 1944; 28: 443–452.
Miller DD, Schricker BR, Rasmussen RR, Van Campen D. An in vitro method for estimation of iron availability from meals. Am J Clin Nutr. 1981;34(10):2248-56.
Drago SR, Binaghi MJ, Valencia ME. Effect of gastric digestion pH on iron, zinc and calcium availability from preterm and term starting infant formulas. J Food Sci. 2005;70:107-12.
Rudloff S y Lönerdal B. Solubility and digestibility of milk proteins in infant formulas exposed to different heat treatments. J Pediatric Gastroenterol Nutr. 1992; 15(1): 25-33.
Wolrd Health Organization (WHO). Diet, Nutrition and Prevention of Chronic Diseases. WHO Technical Report Series 916. Geneva: WHO; 2003.
Estévez AM, Escobar BA Ugarte V. Utilización de cotiledones de algarrobo (Prosopis chilensis) en la elaboración de barras de cereales. Arch Latinoam Nut. 2000; 50(2): 148 –51.
Torresani ME; Somoza MI. Lineamientos para el Cuidado Nutricional. 2º Edición. Buenos Aires: Editorial Eudeba; 2003.
Hernández M, De la Vega A, Sotelo.A. Determinación de la Digestibilidad Proteinica in vitro e in vivo en Cereales y Leguminosas Crudos y Cocidos. Arch LatinoamNutr. 1984; 24(3): 515-22.
Balandrán-Quintana RR, Barbosa-Cánovas GV, Zazueta-Morales JJ, Anzaldúa-Morales A y Quintero-Ramos A. Functional and Bean Meal (Phaseolus Vulgaris L:). J Food Sci. 1998; 63(1): 113-16.
Dyner L, Drago SR, Piñeiro A, Sanchez H, González R, Villaamil E, et al. Composición y aporte potencial de hierro, calcio y zinc de panes y fideos elaborados con harinas de trigo y amaranto. Arch Latinoam Nutr. 2007; 57: 69-78.
Drago SR, González RJ, Chel-Guerrero L and Valencia ME. Evaluación de la disponibilidad de minerales en harinas de frijol y en mezclas de maíz/frijol extrudidas. Inf Tecnol. 2007; 18: 41-6.
Drago S, Lassa S, De Greef DM, González RJ, Valencia M. Efecto de la cocción sobre la disponibilidad de minerales de harinas de leguminosas (Phaseolus lunatus). XXVIII Reunión Anual de CASLAN. XXII Jornadas Regionales de Bromatología y VII de Nutrición. Gualeguaychú, Entre Ríos, 13 y 14 de octubre de 2005.
Ziegler EE y Filer LJ. Conocimientos Actuales sobre nutrición, 7º ed. Washinton DC: OMS. ILSI Pub Cientif; 1990.
Monsen ER. Estimation of available dietary iron. Am J Nutr. 1978; 31(1): 134-41.
Martín de Portela ML. Vitaminas y minerales en nutrición, 1º ed. Buenos Aires: Libreros López Editores; 1993.