Mecanismos moleculares implicados en los posibles efectos de los compuestos fenólicos en la disminución del riesgo de enfermedades cardiovasculares
DOI:
https://doi.org/10.14306/renhyd.17.3.22Palabras clave:
Enfermedades cardiovasculares, Polifenoles, Antioxidantes, Prevención primariaResumen
El objetivo de la presente revisión es evaluar los mecanismos implicados en la posible asociación entre los polifenoles y la disminución del riesgo de padecer enfermedades cardiovasculares, postulando que su consumo habitual en la dieta occidental podría resultar beneficioso para la protección de los pacientes frente las enfermedades cardiovasculares. Se realizó una extensa búsqueda de publicaciones científicas recientes en las siguientes bases de datos electrónicas especializadas: PubMed central (PMC)-NBCI, Elsevier Journal, Scielo España, Scirus, Science Direct, Web of Science, incluyendo estudios en células, animales y humanos, sobre el efecto de los polifenoles en la prevención y desarrollo de enfermedades cardiovasculares. Los estudios in vitro, en modelos animales y en humanos, muestran la capacidad potencial de los compuestos fenólicos para actuar frente a enfermedades cardiovasculares debido a su acción antioxidante, vasodilatadora y de mejora de los perfiles lipídicos con atenuación de las lipoproteínas de baja densidad. Su consumo habitual en la dieta occidental podría resultar beneficioso para la protección de los pacientes frente las enfermedades cardiovasculares.
Citas
Plaza I, Villar F, Mata P, Pérez F, Maiquez A, Casanovas JA, et al. Control de la colesterolemia en España, 2000. Un instrumento para la prevención cardiovascular. Rev Esp Card. 2000; 53(6): 815-37.
Banegas J, Villar F, Graciani A, Rogríguez-Artalejo F. Epidemiología de las enfermedades cardiovasculares en España. Rev Esp Card. 2006; 6:3-12.
Jánosi A. Epidemiology and prevention of cardiovascular diseases. Orv Hetil. 2005; 146(15): 683-8.
Jørgensen T, Willaing I, Thomsen TF. Cardiovascular diseases. From epidemiology to prevention. Ugeskr Laeger. 2005; 167(10): 1170-3.
Lahoz C, Mostaza JM. La aterosclerosis como enfermedad sistémica. Rev Esp Card. 2007; 60(2):184-95.
Dorresteijn JA, Boekholdt SM, van der Graaf Y, Kastelein JJ, Larosa JC, Pedersen TR, et al. High-Dose Statin Therapy in Patients with Stable Coronary Artery Disease: Treating the Right Patients Based on Individualized Prediction of Treatment Effect. Circulation. 2013; 127(25): 2485-93.
Fu R, Sun YM, Su Y, Wu Y, Luan Y. Effect of statin therapy on plasma high-density lipoprotein-cholesterol levels is modified by paraoxonase 1 in Chinese patients with coronary heart disease. Clin Exp Pharmacol Physiol. 2008; 35(8): 982-3.
Tirnaksiz E, Pamukcu B, Oflaz H, Nisanci Y. Effect of high dose statin therapy on platelet function; statins reduce aspirinresistant platelet aggregation in patients with coronary heart disease. J Thromb Thrombolysis. 2009; 27(1): 24-8.
Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006 Apr 5; 295(13): 1556-65.
Radhika G, Sudha V, Mohan Sathya R, Ganesan A, Mohan V. Association of fruit and vegetable intake with cardiovascular risk factors in urban south Indians. Br J Nutr. 2008 Feb; 99(2):398-405.
Adebawo O, Salau B, Ezima E, Oyefuga O, Ajani E, Idowu G, et al. Fruits and vegetables moderate lipid cardiovascular risk factor in hypertensive patients. Lipids Health Dis. 2006; 5:14.
Bazzano LA, Serdula MK, Liu S. Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr Atheroscler Rep. 2003; 5(6): 492-9.
Agouni A, Lagrue-Lak-Hal AH, Mostefai HA, Tesse A, Mulder P, Rouet P, et al. Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in Zucker fatty rats (Fa/Fa). PLoS One. 2009; 4(5): e5557.
Lagrue-Lak-Hal AH, Andriantsitohaina R. Red wine and cardiovascular risks. Arch Mal Coeur Vaiss. 2006; 99(12): 1230-5.
Saremi A, Arora R. The cardiovascular implications of alcohol and red wine. Am J Ther. 2008; 15(3): 265-77.
García-Alonso FJ, Jorge-Vidal V, Ros G, Periago MJ. Effect of consumption of tomato juice enriched with n-3 polyunsaturated fatty acids on the lipid profile, antioxidant biomarker status, and cardiovascular disease risk in healthy women. Eur J Nutr. 2012; 51(4): 415-24.
Padilla FC, Rincón AM, Bou-Rached L. Contenido de polifenoles y actividad antioxidante de varias semillas y nueces. Arch Latinoamer Nutri. 2008; 58(3): 303-8.
Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry. 2006; 99(1): 191-203.
Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, et al. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci USA. 2006; 103(4): 1024-9.
Perez-Vizcaino F, Duarte J, Jimenez R, Santos-Buelga C, Osuna A. Antihypertensive effects of the flavonoid quercetin. Pharmacol Rep. 2009; 61(1): 67-75.
Kar P, Laight D, Shaw KM, Cummings MH. Flavonoid-rich grapeseed extracts: a new approach in high cardiovascular risk patients? Int J Clin Pract. 2006; 60(11): 1484-92.
Engler MB, Engler MM. The emerging role of flavonoid-rich cocoa and chocolate in cardiovascular health and disease. Nutr Rev. 2006; 64(3): 109-18.
Visioli F, Davalos A. Polyphenols and cardiovascular disease: a critical summary of the evidence. Mini Rev Med Chem. 2011; 11(14): 1186-90.
Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr. 2005; 81(1 Suppl): 215S-7S.
Nicholson SK, Tucker GA, Brameld JM. Physiological concentrations of dietary polyphenols regulate vascular endothelial cell expression of genes important in cardiovascular health. Br J Nutr. 2010; 103(10): 1398-403.
Dell’Agli M, Buscialà A, Bosisio E. Vascular effects of wine polyphenols. Cardiovasc Res. 2004; 63(4): 593-602.
Vita JA. Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr. 2005; 81(1 Suppl): 292S-7S.
Jiang F, Dusting GJ. Natural phenolic compounds as cardiovascular therapeutics: potential role of their antiinflammatory effects. Curr Vasc Pharmacol. 2003; 1(2):135-56.
Bornhoeft J, Castaneda D, Nemoseck T, Wang P, Henning SM, Hong MY. The protective effects of green tea polyphenols: lipid profile, inflammation, and antioxidant capacity in rats fed an atherogenic diet and dextran sodium sulfate. J Med Food. 2012; 15(8): 726-32.
Arranz S, Chiva-Blanch G, Valderas-Martínez P, Medina-Remon A, Lamuela-Raventos RM, Estruch R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients. 2012; 4(7): 759-81.
Barona J, Aristizabal JC, Blesso CN, Volek JS, Fernandez ML. Grape polyphenols reduce blood pressure and increase flowmediated vasodilation in men with metabolic syndrome. J Nutr. 2012; 142(9): 1626-32.
Nicholson SK, Tucker GA, Brameld JM. Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc Nutr Soc. 2008; 67(1): 42-7.
Retèl J, Hoebee B, Braun JE, Lutgerink JT, van den Akker E, Wanamarta AH, Jet al. Mutational specificity of oxidative DNA damage. Mutat Res. 1993; 299(3-4): 165-82.
Vilar-Rojas C, Guzman-Grenfell AM, Hicks JJ. Participation of oxygen-free radicals in the oxido-reduction of proteins. Arch Med Res. 1996; 27(1): 1-6.
Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000; 279(6): 1005-28.
Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr. 2000; 72(2 Suppl): 637S-46S.
Vanisree M, Alexander-Lindo RL, DeWitt DL, Nair MG. Functional food components of Antigonon leptopus tea. Food Chemistry. 2008; 106(2): 487-92.
Pignatelli P, Ghiselli A, Buchetti B, Carnevale R, Natella F, Germanò G, et al. Polyphenols synergistically inhibit oxidative stress in subjects given red and white wine. Atherosclerosis. 2006; 188(1): 77-83.
Burns J, Gardner PT, O’Neil J, Crawford S, Morecroft I, McPhail DB, et al. Relationship among antioxidant activity, vasodilation capacity, and phenolic content of red wines. J Agr Food Chem. 2000; 48(2): 220-30.
Vazquez-Agell M, Sacanella E, Tobias E, Monagas M, Antunez E, Zamora-Ros R, et al. Inflammatory markers of atherosclerosis are decreased after moderate consumption of cava (Sparkling wine) in men with low cardiovascular risk. J Nutr. 2007; 137(10): 2279-84.
Imhof A, Blagieva R, Marx N, Koenig W. Drinking modulates monocyte migration in healthy subjects: a randomised intervention study of water, ethanol, red wine and beer with or without alcohol. Diabetes Vasc Dis Re. 2008; 5(1): 48-53.
Wang-Polagruto JF, Villablanca AC, Polagruto JA, Lee L, Holt RR, Schrader HR, et al. Chronic consumption of flavanol-rich cocoa improves endothelial function and decreases vascular cell adhesion molecule in hype cholesterolemic postmenopausal women. J Cardiovasc Pharm. 2006; 47(Suppl 2): S177-S86.
Félétou M, Vanhoutte PM. EDHF: new therapeutic targets? Pharmacol Res. 2004; 49(6): 565-80.
Aldini G, Carini M, Piccoli A, Rossoni G, Facino RM. Procyanidins from grape seeds protect endothelial cells from peroxynitrite damage and enhance endothelium-dependent relaxation in human artery: new evidences for cardio-protection. Life Sci. 2003; 73(22): 2883-98.
Mukai Y, Sato S. Polyphenol-containing azuki bean (Vigna angularis) seed coats attenuate vascular oxidative stress and inflammation in spontaneously hypertensive rats. J Nutr Biochem. 2011; 22(1): 16-21.
Galleano M, Pechanova O, Fraga CG. Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr Pharm Biotechnol. 2010; 11(8): 837-48.
Widlansky ME, Hamburg NM, Anter E, Holbrook M, Kahn DF, Elliott JG, et al. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease. J Am Coll Nutr. 2007; 26(2): 95-102.
Fisher ND, Hughes M, Gerhard-Herman M, Hollenberg NK. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens. 2003; 21(12): 2281-6.
Heiss C, Dejam A, Kleinbongard P, Schewe T, Sies H, Kelm M. Vascular effects of cocoa rich in flavan-3-ols. JAMA. 2003, 290(8): 1030-1.
Cuevas AM, Guasch V, Castillo O, Irribarra V, Mizon C, San Martin A, et al. A high-fat diet induces and red wine counteracts endothelial dysfunction in human volunteers. Lipids. 2000; 35(2): 143-8.
Stein JH, Keevil JG, Wiebe DA, Aeschlimann S, Folts JD. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation. 1999; 100(10): 1050-5.
Li HF, Chen SA, Wu SN. Evidence for the stimulatory effect of resveratrol on Ca(2+)-activated K+ current in vascular endothelial cells. Cardiovasc Res. 2000; 45(4): 1035-45.
Stoclet JC, Chataigneau T, Ndiaye M, Oak MH, El Bedoui J, Chataigneau M, et al. Vascular protection by dietary polyphenols. Eur J Pharmacol. 2004; 500(1-3): 299-313.
Holt RR, Schramm DD, Keen CL, Lazarus SA, Schmitz HH. Chocolate consumption and platelet function. JAMA. 2002; 287(17): 2212-13.
Bordeaux B, Yanek LR, Moy TF, White LW, Becker LC, Faraday N, et al. Casual chocolate consumption and inhibition of platelet function. Prev Cardiol. 2007; 10(4): 175-80.
Freedman JE, Parker C 3rd, Li L, Perlman JA, Frei B, Ivanov V, et al. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation. 2001; 103(23): 2792-8.
Albers AR, Varghese S, Vitseva O, Vita JA, Freedman JE. The antiinflammatory effects of purple grape juice consumption in subjects with stable coronary artery disease. Arterioscler Thromb Vasc Biol. 2004; 24(11): 179-80.
Hubbard GP, Wolffram S, de Vos R, Bovy A, Gibbins JM, Lovegrove JA. Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study. Br J Nutr. 2006; 96(3):482-8.
Hubbard GP, Wolffram S, Lovegrove JA, Gibbins JM. Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J Thromb Haemost. 2004; 2(12): 2138-45.
Erlund I, Koli R, Alfthan G, Marniemi J, Puukka P, Mustonen P, et al. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr. 2008; 87(2): 323-31.
Castaner O, Covas MI, Khymenets O, Nyyssonen K, Konstantinidou V, Zunft HF, et al. Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am J Clin Nutr. 2012; 95(5): 1238-44.
Castaner O, Fito M, Lopez-Sabater MC, Poulsen HE, Nyyssonen K, Schroder H, et al. The effect of olive oil polyphenols on antibodies against oxidized LDL. A randomized clinical trial. Clin Nutr. 2011; 30(4): 490-3.
Yang MY, Huang CN, Chan KC, Yang YS, Peng CH, Wang CJ. Mulberry leaf polyphenols possess antiatherogenesis effect via inhibiting LDL oxidation and foam cell formation. J Agric Food Chem. 2011; 59(5): 1985-95.
Ruiz-Roso B, Quintela JC, de la Fuente E, Haya J, Perez-Olleros L. Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemic sujects. Plant Foods Hum Nutr. 2010; 65(1): 50-6.
Syam AF. The role of tea polyphenols in LDL oxidation. Acta Med Indones. 2007; 39(2): 65.
Wahyudi S, Sargowo D. Green tea polyphenols inhibit oxidized LDL-induced NF-KB activation in human umbilical vein endothelial cells. Acta Med Indones. 2007; 39(2): 66-70.
Brito P, Almeida LM, Dinis TC. The interaction of resveratrol with ferrylmyoglobin and peroxynitrite; protection against LDL oxidation. Free Radic Res. 2002; 36(6): 621-31.
Iijima K, Yoshizumi M, Hashimoto M, Akishita M, Kozaki K, Ako J, et al. Red wine polyphenols inhibit vascular smooth muscle cell migration through two distinct signaling pathways. Circulation. 2002; 105(20): 2404-10.
Iijima K, Yoshizumi M, Hashimoto M, Kim S, Eto M, Ako J, Liang YQ, Sudoh N, Hosoda K, Nakahara K et al. Red wine polyphenols inhibit proliferation of vascular smooth muscle cells and downregulate expression of cyclin A gene. Circulation. 2000; 101(7): 805-11.
Hsieh TC, Juan G, Darzynkiewicz Z, Wu JM. Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21(WAF1/CIP1), and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2. Cancer Res. 1999; 59(11): 2596-601.
Kojima-Yuasa A, Hua JJ, Kennedy DO, Matsui-Yuasa I. Green tea extract inhibits angiogenesis of human umbilical vein endothelial cells through reduction of expression of VEGF receptors. Life Sci. 2003; 73(10): 1299-313.
Yoo HG, Shin BA, Park JC, Kim HS, Kim WJ, Chay KO, et al. Induction of apoptosis by the green tea flavonol (-)-epigallocatechin-3-gallate in human endothelial ECV 304 cells. Anticancer Res. 2002; 22(6A): 3373-8.