Mineral bioavailability in foods made with gluten-free commercial premixes
DOI:
https://doi.org/10.14306/renhyd.23.2.606Keywords:
Celiac Disease, Diet, Gluten-Free, Food, Trace Elements, Nutritional Status, Iron, Calcium, ZincAbstract
Introduction: Celiac disease has prevalence between 1% and 2% in Argentina. The only effective treatment for this pathology is a permanent gluten-free diet. This can lead to possible nutrient deficiencies. The objective of the present work was to determine the bioaccessibility of iron, calcium and zinc, in gluten-free foods prepared with commercial premixes available in the Argentinean market.Material and methods: 12 foods prepared with 9 different premixes were analyzed: Pastry products (pudding and cake), breads and pizzas were analyzed. The total content of iron, calcium and zinc was determined by atomic absorption spectrometry and dialyzability (D%) by an in vitro method that simulates gastrointestinal conditions. The potential contribution (PA) was calculated based on its total content and dialyzability. Since the PA represents the mineral available for absorption, this data was compared with the minimum requirement (R) values.
Results: The iron content in the samples varied between 0.4-2.5 mg/100 g; calcium between 22-167 mg/100 g and zinc 0.13-1.93 mg/100 g. In the case of D%, the following values were obtained: D% Fe: 11.8-20.1%; D% Ca: 15.6-28.9% and D% Zn: 8.1-15.7%. Regarding the percentage of coverage of the daily requirements with a portion of the foods studied, we could observe that there was a great variation depending on the food and the age group studied.
Conclusion: the content and amount of minerals available from the gluten-free foods analyzed are relatively low.
References
(1) Kivelä L, Kaukinen K, Lähdeaho M-L, Huhtala H, Ashorn M, Ruuska T, et al. Presentation of Celiac Disease in Finnish Children Is No Longer Changing: A 50-Year Perspective. J Pediatr. 2015;167(5):1109-1115.e1.
(2) Mäki M, Mustalahti K, Kokkonen J, Kulmala P, Haapalahti M, Karttunen T, et al. Prevalence of Celiac disease among children in Finland. N Engl J Med. 2003;348(25):2517-24.
(3) Webb C, Norström F, Myléus A, Ivarsson A, Halvarsson B, Högberg L, et al. Celiac disease can be predicted by high levels of anti-tissue transglutaminase antibodies in population-based screening. J Pediatr Gastroenterol Nutr. 2015;60(6):787-91.
(4) Guandalini S, Assiri A. Celiac disease: a review. JAMA Pediatr. 2014;168(3):272-8.
(5) Niewinski MM. Advances in celiac disease and gluten-free diet. J Am Diet Assoc. 2008;108(4):661-72.
(6) Green PHR null, Stavropoulos SN, Panagi SG, Goldstein SL, Mcmahon DJ, Absan H, et al. Characteristics of adult celiac disease in the USA: results of a national survey. Am J Gastroenterol. 2001;96(1):126-31.
(7) Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB, Drago S, et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med. 2003;163(3):286-92.
(8) Rubio-Tapia A, Hill ID, Kelly CP, Calderwood AH, Murray JA, American College of Gastroenterology. ACG clinical guidelines: diagnosis and management of celiac disease. Am J Gastroenterol. 2013;108(5):656-76; quiz 677.
(9) Repo M, Lindfors K, Mäki M, Huhtala H, Laurila K, Lähdeaho M-L, et al. Anemia and Iron Deficiency in Children With Potential Celiac Disease. J Pediatr Gastroenterol Nutr. 2017;64(1):56-62.
(10) Popov J, Baldawi M, Mbuagbaw L, Gould M, Mileski H, Brill H, et al. Iron Status in Pediatric Celiac Disease: A Retrospective Chart Review. J Pediatr Gastroenterol Nutr. 2018;66(4):651-3.
(11) Caruso R, Pallone F, Stasi E, Romeo S, Monteleone G. Appropriate nutrient supplementation in celiac disease. Ann Med. 2013;45(8):522-31.
(12) Saturni L, Ferretti G, Bacchetti T. The gluten-free diet: safety and nutritional quality. Nutrients. 2010;2(1):16-34.
(13) Penagini F, Dilillo D, Meneghin F, Mameli C, Fabiano V, Zuccotti GV. Gluten-free diet in children: an approach to a nutritionally adequate and balanced diet. Nutrients. 2013;5(11):4553-65.
(14) Shepherd SJ, Gibson PR. Nutritional inadequacies of the gluten-free diet in both recently-diagnosed and long-term patients with coeliac disease. J Hum Nutr Diet. 2013;26(4):349-58.
(15) Annibale B, Severi C, Chistolini A, Antonelli G, Lahner E, Marcheggiano A, et al. Efficacy of gluten-free diet alone on recovery from iron deficiency anemia in adult celiac patients. Am J Gastroenterol. 2001;96(1):132-7.
(16) Vici G, Belli L, Biondi M, Polzonetti V. Gluten free diet and nutrient deficiencies: A review. Clin Nutr. 2016;35(6):1236-41.
(17) Rybicka I, Gliszczyńska-Świgło A. Minerals in grain gluten-free products. The content of calcium, potassium, magnesium, sodium, copper, iron, manganese, and zinc. J Food Compost Anal. 2017;59:61-7.
(18) Gliszczyńska-Świgło A, Klimczak I, Rybicka I. Chemometric analysis of minerals in gluten-free products. J Sci Food Agric. 2018;98(8):3041-8.
(19) Candia V, Ríos-Castillo I, Carrera-Gil F, Vizcarra B, Olivares M, Chaniotakis S, et al. Effect of various calcium salts on non-heme iron bioavailability in fasted women of childbearing age. J Trace Elem Med Biol. 2018;49:8-12.
(20) Sheftel J, Loechl C, Mokhtar N, Tanumihardjo SA. Use of Stable Isotopes to Evaluate Bioefficacy of Provitamin A Carotenoids, Vitamin A Status, and Bioavailability of Iron and Zinc. Adv Nutr. 2018;9(5):625-36.
(21) Cian RE, Drago SR, De Greef DM, Torres RL, González RJ. Iron and zinc availability and some physical characteristics from extruded products with added concentrate and hydrolysates from bovine hemoglobin. Int J Food Sci Nutr. 2010;61(6):573-82.
(22) Fernández-Palacios L, Ros-Berruezo G, Barrientos-Augustinus E, Jirón de Caballero E, Frontela-Saseta C. Aporte de hierro y zinc bioaccesible a la dieta de niños hondureños menores de 24 meses. Nutr Hosp. 2017;34(2):290-300.
(23) Ministerio de Salud y Desarrollo Social. Capítulo XVII: Alimentos de Régimen o Dietético. En: Código Alimentario Argentino [Internet]. Buenos Aires: Ministerio de Salud y Desarrollo Social - Argentina; 2018. Disponible en: http://www.anmat.gov.ar/alimentos/codigoa/Capitulo_XVII.pdf
(24) Miller DD, Schricker BR, Rasmussen RR, Van Campen D. An in vitro method for estimation of iron availability from meals. Am J Clin Nutr. 1981;34(10):2248-56.
(25) Wolfgor R, Drago SR, Rodriguez V, Pellegrino NR, Valencia ME. In vitro measurement of available iron in fortified foods. Food Res Int. 2002;35(1):85-90.
(26) Drago SR, Binaghi M, Valencia ME. Effect of Gastric Digestion pH on Iron, Zinc, and Calcium Dialyzability from Preterm and Term Starting Infant Formulas. J Food Sci. 2005;70(2):S107-12.
(27) Association of Official Analytical Chemists. Official methods of analysis of AOAC International. Horwitz W, editor. Gaithersburg, Md.: Association of Official Analytical Chemists; 2000.
(28) Perkin-Elmer Corporation. Analytical methods for atomic absorption spectrophotometry. Norwalk, Conn.: Perkin-Elmer Corp.; 1971.
(29) Organización de las Naciones Unidas para la Agricultura y la Alimentación. Necesidades de vitamina A, hierro, folato y vitamina B 12: informe de una consulta mixta FAO. Roma: FAO; 1991. 39-60 p. (Estudios FAO Alimentación y nutrición).
(30) Comisión del Codex Alimentarius. Programa conjunto FAO/OMS sobre normas alimentarias: Informe de la 26ª reunión del Comité del CODEX sobre nutrición y alimentos para regímenes especiales [Internet]. Roma: Programa Conjunto FAO/OMS sobre Normas Alimentarias, FAO; 2004. Disponible en: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/pt/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-720-26%252Fal28_26s.pdf
(31) Ministerio de Salud y Desarrollo Social. Capítulo V: Normas para la Rotulación y Publicidad de los Alimentos. En: Código Alimentario Argentino [Internet]. Buenos Aires: Ministerio de Salud y Desarrollo Social - Argentina; 2017. Disponible en: http://www.anmat.gov.ar/alimentos/codigoa/Capitulo_V.pdf
(32) Rebellato AP, Bussi J, Silva JGS, Greiner R, Steel CJ, Pallone JAL. Effect of different iron compounds on rheological and technological parameters as well as bioaccessibility of minerals in whole wheat bread. Food Res Int. 2017;94:65-71.
(33) Salinas MV, Hamet MF, Binaghi J, Abraham AG, Weisstaub A, Zuleta A, et al. Calcium–inulin wheat bread: prebiotic effect and bone mineralisation in growing rats. Int J Food Sci Technol. 2017;52(11):2463-70.
(34) Binaghi MJ. Aplicación de un método in vitro para la evaluación de la disponibilidad potencial de minerales en matrices alimentarias diversas. Estimación del aporte potencial de hierro, zinc y calcio en alimentos dirigidos a grupos vulnerables de la población [Internet] [Tesis de Doctorado]. [Buenos Aires]: Universidad de Buenos Aires; 2014. Disponible en: http://repositoriouba.sisbi.uba.ar/gsdl/collect/posgrauba/index/assoc/HWA_790.dir/790.PDF
(35) Dyner L, Cagnasso C, Ferreyra V, Pita Martín de Portela ML, Apro N, Olivera Carrión M. Contenido de calcio, fibra dietaria y fitatos en diversas harinas de cereales, pseudocereales y otros. Acta Bioquím Clín Latinoam. 2016;50(3):435-43.
(36) Drago SR, Valencia ME. Influence of components of infant formulas on in vitro iron, zinc, and calcium availability. J Agric Food Chem. 2004;52(10):3202-7.