Analysis of energy and nutrient consumption of people with prediabetes in the city of La Plata: a cross-sectional study

Authors

  • Rocio Torrieri CENEXA – Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET- CeAs CICPBA), Facultad de Ciencias Médicas Universidad Nacional de La Plata, La Plata, Buenos Aires.
  • Jorge Federico Elgart CENEXA – Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET- CeAs CICPBA), Facultad de Ciencias Médicas Universidad Nacional de La Plata, La Plata, Buenos Aires.
  • Juan José Gagliardino CENEXA – Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET- CeAs CICPBA), Facultad de Ciencias Médicas Universidad Nacional de La Plata, La Plata, Buenos Aires.

DOI:

https://doi.org/10.14306/renhyd.28.3.2136%20

Keywords:

Prediabetic State, prediabetes diet, Energy intake

Abstract

Introduction: In people at high risk of developing diabetes, food and calorie intake have an influence on their quality of life and the possible progression to diabetes. Therefore, the objective was to describe and estimate energy and nutrient consumption, and its adaptation to nutritional requirements in people with Prediabetes (PreD).

Methods: Cross-sectional descriptive observational study on a group of adults from La Plata with PreD who had their daily calorie and nutrient intake measured, based on the NutriQuid food record. A descriptive analysis was carried out and food intake indicators were verified, to then compare their adequacy to nutritional recommendations.

Results: 115 people with PreD were evaluated, of which 69.3% were obese. The median caloric intake was 2046.3 kcal/day, higher than the recommended value, with a distribution of 40.4% carbohydrates, 19.3% proteins and 38.3% fats. Likewise, only 18.3% of the participants had adequate fiber consumption, 29.6% had adequate saturated fat consumption, and 42.6% had adequate cholesterol consumption.

Conclusions: Our study shows that people with PreD have a high consumption of calories, total fat, saturated fat and cholesterol compared to the recommendations, which determines an unbalanced consumption of macronutrients, and low in fiber. This could predispose to the development of type 2 diabetes, metabolic syndrome, and increase cardiovascular risk.

Funding: Secretaría de Ciencia, Tecnología e Innovación Productiva (MINCYT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina y Sanofi Argentina.

References

Williams R, van Gaal L, Lucioni C. Assessing the impact of complications on the costs of Type II diabetes. Diabetologia. 2002;45(1):13-7, doi: 10.1007/s00125-002-0859-9.

Morsanutto A, Berto P, Lopatriello S, Gelisio R, Voinovich D, Cippo PP, et al. Major complications have an impact on total annual medical cost of diabetes: results of a database analysis. J Diabetes Complications. 2006;20(3):163-9, doi: 10.1016/J.JDIACOMP.2005.06.011.

Instituto Nacional de Estadística y Censos - I.N.D.E.C. 4° Encuesta Nacional de Factores de Riesgo. Resultados definitivos. 1.a edición. Ciudad Autónoma de Buenos Aires: Secretaría de Gobierno de Salud de la Nación; 2019.

Ferrante D, Virgolini M. National Risk Factor Survey 2005: Main Results. Prevalence of Cardiovascular Risk Factors in Argentina. Rev Argent Cardiol. 2007;75:20-9.

American Diabetes Association Professional Practice Committee. Standards of Medical Care in Diabetes 2022. vol. 45. Danvers: American Diabetes Association; 2022

Asociación Latinoamericana de Diabetes. Guías ALAD sobre el Diagnóstico, Control y Tratamiento de la Diabetes Mellitus Tipo 2 con Medicina Basada en Evidencia Edición 2019. Ciudad de México: Permanyer; 2019.

Organización Mundial de la Salud. Informe mundial sobre la diabetes. Ginebra: WHO Document Production Services; 2016.

Cosentino F, Grant P, Aboyans V, Bailey C, Ceriello A, Delgado V, et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41:255-323, doi: 10.1093/eurheartj/eht108.

Ministerio de Salud de la Nación. Guía de Práctica Clínica Nacional sobre Prevención, Diagnóstico y Tratamiento de la Diabetes Mellitus tipo 2. Buenos Aires: Dirección Nacional de Abordaje Integral de Enfermedades No Transmisibles; 2019.

Ministerio de Salud de la Nación. Guías alimentarias para la población Argentina. Buenos Aires; 2020.

Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington DC: The National Academies Press; 2005.

Gagliardino JJ, Etchegoyen G, Bourgeois M, Fantuzzi G, García S, González L, et al. Prevención primaria de diabetes tipo 2 en Argentina: estudio piloto en la provincia de Buenos Aires. Rev argent endocrinol metab. 2016:135-41.

Gagliardino JJ, Elgart JF, Bourgeois M, Etchegoyen G, Fantuzzi G, Ré M, et al. Diabetes primary prevention program: New insights from data analysis of recruitment period. Diabetes Metab Res Rev. 2018;34(1), doi: 10.1002/DMRR.2943.

Lindström J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003;26(3):725-31, doi: 10.2337/DIACARE.26.3.725.

Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35(6):1364-79, doi: 10.2337/DC12-0413

Llanos I, Miño C, González C, Gorban de Lapertosa S, Elgart J, Gagliardino J. Evaluación del desempeño del cuestionario FINDRISC en la identificación de personas con prediabetes y diabetes tipo 2 no diagnosticadas. Revista de la Sociedad Argentina de Diabetes. 2022;56(3):79.

Peralta HM, Costa Gil JE, Saleme AE. Evaluación del puntaje FINDRISC para detección de prediabetes y diabetes tipo 2 sin diagnóstico. MEDICINA (Buenos Aires). 2024;84:1-10.

World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications : report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. Geneva: Department of Noncommunicable Disease Surveillance; 1999.

García Pazó SM, González C, Rucci E, Ambrosino C, Vidal J, Fantuzzi G, et al. Self-administered structured food record for measuring individual energy and nutrient intake in large cohorts: design and validation. Endocrinol Diabetes Nutr. 2018;65(9):524-32.

Ministerio de Salud Argentina. SARA: Sistema de Análisis y Registro de Alimentos.. Disponible en: https://sses.msal.gov.ar/sara/.

Zapata ME. Primer estudio sobre el estado nutricional y los hábitos alimentarios de la población adulta de Rosario. 1.a edición. Ciudad Autónoma de Buenos Aires: La Imprenta Digital SRL; 2014.

Kovalskys I, Fisberg M, Gómez G, Pareja RG, Yépez García MC, Cortés Sanabria LY, et al. Energy intake and food sources of eight Latin American countries: results from the Latin American Study of Nutrition and Health (ELANS). Public Health Nutr. 2018;21(14):2535, doi: 10.1017/S1368980018001222.

Weickert MO, Pfeiffer AFH. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J Nutr. 2018;148(1):7-12, doi: 10.1093/JN/NXX008.

Schlickmann D da S, Molz P, Pereira CS, Franke SIR. Evaluación del consumo de macronutrientes y micronutrientes por individuos prediabéticos. Cad Saude Colet. 2022;30(2):189-200, doi: 10.1590/1414-462X202230020098.

Pinheiro V. AC, Canaan R. FA, Gonçalves A. RDC. Insulemia, ingesta alimentaria y metabolismo energético. Revista chilena de nutrición. 2008;35(1):18-24, doi: 10.4067/S0717-75182008000100003.

Evert AB, Dennison M, Gardner CD, Timothy Garvey W, Karen Lau KH, MacLeod J, et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care. 2019;42(5):731-54, doi: 10.2337/DCI19-0014.

Madden AM, Smith S. Body composition and morphological assessment of nutritional status in adults: a review of anthropometric variables. J Hum Nutr Diet. 2016;29(1):7-25, doi: 10.1111/JHN.12278.

Bosy-Westphal A, Müller MJ. Diagnosis of obesity based on body composition-associated health risks-Time for a change in paradigm. Obes Rev. 2021;22 Suppl 2(S2), doi: 10.1111/OBR.13190.

Riley L, Guthold R, Cowan M, Savin S, Bhatti L, Armstrong T, et al. The World Health Organization STEPwise Approach to Noncommunicable Disease Risk-Factor Surveillance: Methods, Challenges, and Opportunities. Am J Public Health. 2016;106(1):74-8, doi: 10.2105/AJPH.2015.302962.

Published

2024-07-19

How to Cite

Torrieri, R., Elgart, J. F., & Gagliardino, J. J. (2024). Analysis of energy and nutrient consumption of people with prediabetes in the city of La Plata: a cross-sectional study . Spanish Journal of Human Nutrition and Dietetics, 28(3), 175–183. https://doi.org/10.14306/renhyd.28.3.2136