Diagnostic Utility of the American Diabetes Association Risk Test for Prediabetes and Diabetes. A Systematic Review and Meta-Analysis
DOI:
https://doi.org/10.14306/renhyd.27.3.1915Keywords:
Prediabetic State, Diabetes Mellitus Type 2, Diagnostic Screening Programs, Systematic Review, Meta-AnalysisAbstract
Introduction: Given the increase in cases of prediabetes and type 2 diabetes mellitus (DM2) worldwide, and the limited access to laboratory analysis in several places, it is necessary to have the implementation of a simple, fast, and without-detection method. laboratory: the American Diabetes Association (ADA) risk test: the ADA test risk score (ADATRS)
Objective: to carry out a systematic review (SR) with meta-analysis on the diagnostic utility of the ADATRS for prediabetes and DM2.
Materials: SR with meta-analysis of studies of diagnostic tests. The search was conducted in four databases: PubMed/Medline, SCOPUS, Web of Science and EMBASE. True positives, true negatives, false positives, and false negatives were obtained for each study. 2×2 tables were constructed based on the information from the article or from the authors. Thus, forest diagrams were presented with a 95% confidence interval (95% CI), both for the overall sensitivity and specificity of the ADATRS for both events of interest.
Results: Forest plots revealed that the sensitivity and specificity for prediabetes were 0.91 (95%CI: 0.82–0.96) and 0.52 (95%CI: 0.36–0.67), respectively. While for DM2, the combined sensitivity and specificity were 0.85 (95%CI: 0.71–0.93) and 0.56 (95%CI: 0.47–0.65), respectively.
Conclusions: Our systematic review and meta-analysis of the current literature suggests that the ADATRS may be useful as a screening method for prediabetes and DM2, given its high sensitivity. However, there is a lot of heterogeneity and few studies even in this regard; therefore, more research work is needed in different populations and with more standardized methods to finally determine the clinical importance of this questionnaire as a screening or diagnostic tool for prediabetes or DM2.
References
(1) Díaz L, Delgado E. Diabetes mellitus. Criterios diagnósticos y clasificación. Epidemiología. Etiopatogenia. Evaluación inicial del paciente con diabetes. Medicine. 2016;12(17):935–46. doi:10.1016/j.med.2016.09.001.
(2) Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21. doi:10.1016/j.diabres.2011.10.029
(3) National Diabetes Statistics Report | Data & Statistics | Diabetes | CDC [Internet]. 2020. Disponible en: https://www.cdc.gov/diabetes/data/statistics/statistics-report.html
(4) Xu Y, Wang L, He J, Bi Y, Li M, Wang T, et al. Prevalence and control of diabetes in Chinese adults. JAMA. 2013;310(9):948–59. doi:10.1001/jama.2013.168118
(5) Ministerio de Sanidad - Portal Estadístico del SNS - Encuesta Nacional de Salud de España 2017 [Internet]. Disponible en: https://www.sanidad.gob.es/estadEstudios/estadisticas/encuestaNacional/encuesta2017.htm
(6) Home, Resources, diabetes L with, Acknowledgement, FAQs, Contact, et al. IDF Diabetes Atlas | Tenth Edition [Internet]. Disponible en: https://diabetesatlas.org/
(7) Carrillo-Larco R, Bernabé-Ortiz A. Diabetes mellitus tipo 2 en Perú: una revisión sistemática sobre la prevalencia e incidencia en población general. Rev Peru Med Exp Salud Publica. 2019;36(1):26–36. doi:10.17843/rpmesp.2019.361.4027
(8) Diabetes Canada Clinical Practice Guidelines Expert Committee, Punthakee Z, Goldenberg R, Katz P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Can J Diabetes. 2018;42 Suppl 1:S10–5. doi:10.1016/j.jcjd.2017.10.003
(9) Peer N, Balakrishna Y, Durao S. Screening for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews [Internet]. 2020 [citado el 28 de mayo de 2023];(5). doi:10.1002/14651858.CD005266.pub2
(10) ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care. 2023;46(Supplement_1):S19–40. doi:10.2337/dc23-S002
(11) Prabhu G, Poovitha M. To Determine the Usefulness of ADA Risk Score to Predict T2dm/Pre Diabetes in South Indian Rural Population. Pre Diabetes. 2019;6(8):4.
(12) Woo Y, Lee C, Fong C, Tso A, Cheung B, Lam K. Validation of the diabetes screening tools proposed by the American Diabetes Association in an aging Chinese population. PLoS ONE. 2017;12(9):e0184840. doi:10.1371/journal.pone.0184840
(13) Poltavskiy E, Kim DJ, Bang H. Comparison of screening scores for diabetes and prediabetes. Diabetes Res Clin Pract. 2016;118:146–53. doi:10.1016/j.diabres.2016.06.022
(14) Agarwal G, Guingona MM, Gaber J, Angeles R, Rao S, Cristobal F. Choosing the most appropriate existing type 2 diabetes risk assessment tool for use in the Philippines: a case-control study with an urban Filipino population. BMC Public Health. 2019;19(1):1169. doi:10.1186/s12889-019-7402-0
(15) Scanlan AB, Maia CM, Perez A, Homko CJ, O’Brien MJ. Diabetes Risk Assessment in Latinas: Effectiveness of a Brief Diabetes Risk Questionnaire for Detecting Prediabetes in a Community-Based Sample. Diabetes Spectr. 2018;31(1):31–6. doi:10.2337/ds16-0051
(16) Galaviz KI, Schneider MF, Tien PC, Mehta CC, Ofotokun I, Colasanti J, et al. Predicting diabetes risk among HIV-positive and HIV-negative women. AIDS. 2018;32(18):2767–75. doi:10.1097/QAD.0000000000002017
(17) Glümer C, Vistisen D, Borch-Johnsen K, Colagiuri S, DETECT-2 Collaboration. Risk scores for type 2 diabetes can be applied in some populations but not all. Diabetes Care. 2006;29(2):410–4. doi:10.2337/diacare.29.02.06.dc05-0945
(18) Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097
(19) American Diabetes Association. Standards of Medical Care in Diabetes—2022 Abridged for Primary Care Providers. Clinical Diabetes. 2022;40(1):10–38. doi:10.2337/cd22-as01
(20) World Health Organization, Federation ID. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia : report of a WHO/IDF consultation [Internet]. World Health Organization; 2006. Disponible en: https://apps.who.int/iris/handle/10665/43588
(21) Bang H, Edwards A, Bomback A, Ballantyne C, Brillon D, Callahan M, et al. Development and validation of a patient self-assessment score for diabetes risk. Ann Intern Med. 2009;151(11):775–83. doi:10.7326/0003-4819-151-11-200912010-00005
(22) Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36. doi:10.7326/0003-4819-155-8-201110180-00009
(23) Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. doi:10.1002/sim.1186
(24) Vera-Ponce VJ, Osada Liy JE, Valladares-Garrido MJ, Vera-Ponce VJ, Osada Liy JE, Valladares-Garrido MJ. Validez de la prueba de riesgo de la Asociación Americana de Diabetes como cribado para prediabetes en una muestra de trabajadores peruanos. Revista de la Facultad de Medicina Humana. 2021;21(3):564–70. doi:10.25176/rfmh.v21i3.3614
(25) Lepage F, Talavera JE, Torres-Malca JR, Zuzunaga-Montoya FE, Cruz-Ausejo L, Cruz-Vargas JADL, et al. Precisión de la prueba de riesgo del ADA y la prueba de riesgo peruana como cribado para prediabetes. Revista Cubana de Medicina Militar. 2022;51(4):02202262.
(26) Jahangiry L, Shamizadeh T, Sarbakhsh P, Farhangi MA, Ponnet K. Diagnostic validity of the pre-diabetes scale among at-risk rural Iranian adults for screening for pre-diabetes. J Diabetes Metab Disord. 2020;19(2):823–8. doi:10.1007/s40200-020-00568-3
(27) Asgari S, Lotfaliany M, Fahimfar N, Hadaegh F, Azizi F, Khalili D. The external validity and performance of the no-laboratory American Diabetes Association screening tool for identifying undiagnosed type 2 diabetes among the Iranian population. Prim Care Diabetes. 2020;14(6):672–7. doi:10.1016/j.pcd.2020.04.001
(28) Vanderwood KK, Kramer MK, Miller RG, Arena VC, Kriska AM. Evaluation of non-invasive screening measures to identify individuals with prediabetes. Diabetes Res Clin Pract. 2015;107(1):194–201. doi:10.1016/j.diabres.2014.06.003
(29) Aldayel FA, Belal MA, Alsheikh AM. The Validity of the American Diabetes Association’s Diabetes Risk Test in a Saudi Arabian Population. Cureus. 2021;13(9):e18018. doi:10.7759/cureus.18018
(30) Tentolouris N, Lathouris P, Lontou S, Tzemos K, Maynard J. Screening for HbA1c-defined prediabetes and diabetes in an at-risk greek population: performance comparison of random capillary glucose, the ADA diabetes risk test and skin fluorescence spectroscopy. Diabetes Res Clin Pract. 2013;100(1):39–45. doi:10.1016/j.diabres.2013.01.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Victor Juan Vera-Ponce, Zulema Zeñas, Joan A Loayza-Castro, Fiorella E Zuzunaga-Montoya, Mario J Valladares-Garrido
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.