Food additives added to packaged or canned foods in Mexico, reliable information?

Authors

  • Jocelyn Astrid Carbajal-Sánchez Autonomous Mexico State University
  • Pablo Antonio Moreno-Pérez Laboratorio de Microbiología Medica y ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México, México

DOI:

https://doi.org/10.14306/renhyd.27.1.1768%20

Keywords:

Food Safety, Food Preservatives, Food Additives

Abstract

Introduction: Food additives (AA) are ingredients that are added to foods to modify their physical and chemical characteristics. Approximately 1,000 AA are used under the “Generally Recognized as Safe” designation without approval from the US Food and Drug Administration. There is evidence that some AA can be potentially toxic to health. The person in charge of regulating AA worldwide is the Food and Agriculture Organization of the United Nations and the World Health Organization, through the Codex Alimentarius Commission. However, in Mexico there are no studies on the toxicity of AA in the population, given the impossibility of estimating its consumption taking the "Admissible Daily Intake" as a reference (IDA).

Objective: Identify the information on the concentration of various AAs on the labels of food products in Mexico.

Methods: A descriptive cross-sectional study was carried out, packaged or canned foods (AEE) were selected, available in leading self-service store chains in Mexico, in 10 states of the Mexican Republic (Baja California, Campeche, Guadalajara, Mexico, Monterrey, Querétaro, Quintana Roo, Tabasco, Veracruz and Yucatan). The AEE selection criteria were a) that they were simultaneously available for sale nationwide in at least two of three self-service stores, b) based on the information available on the nutritional labeling, which mentioned the added AA, commonly used in multiple AEE.

Results: An average of 900 AEE that did not meet the inclusion criteria were found. More than 120 AEE mention the added AA (˃ 98%), but only 2 AEE mention the concentration (<1.5%).

Conclusions: The lack of information on the concentration of AA added to AEE does not allow the ADI to be taken as a reference in the intake of AA in the Mexican population.

Author Biography

Jocelyn Astrid Carbajal-Sánchez , Autonomous Mexico State University

Master in Health Sciences, from the Autonomous University of the State of Mexico

Doctoral student in Health Sciences at the Autonomous University of the State of Mexico

References

(1) FDA. U.S. Food and Drug Administration. Compliance program guidance manual [internet]. 2022. [citado 2 de noviembre de 2022). Disponible en: https://www.fda.gov/media/71661/download#:~:text=Section%20201(s)%20of%20the,the%20characteristic%20of%20any%20food

(2) EFSA. European Food Safety Authority. Food Additives. [internet]. 2022. [citado 2 de noviembre de 2022). Disponible en: https://www.efsa.europa.eu/es/topics/topic/food-additives

(3) OMS. Organización mundial de la salud. Aditivos alimentarios. [internet]. 2022. [citado 28 de abril de 2022). Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/food-additives

(4) The Codex General Standard for Food Additives. Functional classes of food additives. [internet]. 2022. [citado 2 de noviembre de 2022). Disponible en: https://www.fao.org/gsfaonline/reference/techfuncs.html?lang

(5) Clean water action and clean water fund. What’s in the package? Unveiling the Toxic Secrets of Food and Beverage Packaging. [internet]. 2016. [citado 13 de abril de 2022). Disponible en: https://www.cleanwateraction.org/sites/default/files/CA_TIP_rpt_08.24.16a_web.pdf

(6) Çolakoğlu F, Muhammet LS. Effects of Sunset Yellow FCF on Immune System Organs During Different Chicken Embryonic Periods. Journal of Veterinary Research. 2020; 64(4): 597-607. https://doi: 10.2478/jvetres-2020-0064

(7) Ameur FZ, Mehedi N, Soler Rivas C, Gonzalez A, Kheroua O, Saidi D. Effect of tartrazine on digestive enzymatic activities: In vivo and in vitro studies. Toxicological Research. 2020; 36(2):159-166, https://doi.org/10.1007/s43188-019-00023-3

(8) FAO. Organización de las Naciones Unidas para la Alimentación y la Agricultura. La Seguridad Alimentaria: información para la toma de decisiones. Guía práctica. 2022. [citado 17 diciembre de 2022). Disponible en: https://www.fao.org/3/al936s/al936s00.pdf

(9) FAO/WHO. Organización de las Naciones Unidas para la Alimentación y la Agricultura/Organización Mundial de la Salud. Codex alimentarius. Normas internacionales de alimentos. [internet]. 2022. [citado 17 febrero de 2022). Disponible en: http://www.fao.org/fao-who-codexalimentarius/about-codex/members/es/

(10) DOF. Diario oficial de la Federación. Acuerdo por el que se modifica el diverso por el que se determinan los aditivos y coadyuvantes en alimentos, bebidas y suplementos alimenticios, su uso y disposiciones sanitarias. [internet]. 2012. [citado 7 enero de 2022]. Disponible en: https://dof.gob.mx/nota_detalle.php?codigo=5437267&fecha=16/05/2016#gsc.tab=0

(11) Secretaria de Gobernación. Consultiva general jurídica. Oficio No. CGJC/OR/1828/2020. [internet]. 2020. [citado3 mayo de 2022). Disponible en: http://gaceta.diputados.gob.mx/PDF/64/2021/feb/Salud_Coadyuvantes-20210203.pdf

(12) Alimohammadi A, Moosavy MH, Amin Doustvandi M, Baradaran B, Amini M, Mokhtarzadeh A, De la Guardia, M. Sodium metabisulfite as a cytotoxic food additive induces apoptosis in HFFF2 cells. Food chemistry. 2021; 358, 129910. https://doi.org/10.1016/j.foodchem.2021.129910

(13) Lai MC, Hung TY, Lin KM, Sung PS, Wu SJ, Yang CS, Wu YJ, Tsai JJ, Wu SN, Huang CW. Sodium Metabisulfite: Effects on Ionic Currents and Excitotoxicity. Neurotoxicity research. 2018; 34(1), 1–15. https://doi.org/10.1007/s12640-017-9844-4

(14) Diao J, Xia Y, Jiang X, Qiu J, Cheng S, Su J, Duan, X, Gao M, Qin X, Zhang J, Fan J, Zou Z, Chen, C. Silicon dioxide nanoparticles induced neurobehavioral impairments by disrupting microbiota-gut-brain axis. Journal of nanobiotechnology. 2021; 19(1), 174. https://doi.org/10.1186/s12951-021-00916-2

(15) Chen H, Zhao R, Wang B, Cai C, Zheng L, Wang H, Wang M, Ouyang H, Zhou X, Chai Z, Zhao Y, Feng W. The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact. 2017; 8:80–88. https://doi.org/10.1016/j.impact.2017.07.005

(16) He Z, Chen L, Catalan-Dibene J, Bongers G, Faith JJ, Suebsuwong C, DeVita RJ, Shen Z, Fox JG, Lafaille JJ, Furtado GC, Lira SA. Food colorants metabolized by commensal bacteria promote colitis in mice with dysregulated expression of interleukin-23. Cell Metabolism. 2021; 33:1358–1371. https://doi: 10.1016/j.cmet..04.015

(17) Khan IS, Dar KB, Ganie SA, Ali MN. Toxicological impact of sodium benzoate on inflammatory cytokines, oxidative stress and biochemical markers in male Wistar rats. Drug and Chemical Toxicology. 2020; 1–10. https://doi.org/10.1080/01480545.2020.1825472

(18) Hrncirova L, Hudcovic T, Sukova E, Machova V, Trckova E, Krejsek J, Hrncir T. Human gut microbes are susceptible to antimicrobial food additives in vitro. Folia Microbiologica. 2019; 64:497–508. https://doi: 10.1007/s12223-018-00674-z.

(19) Baran A, Yildirim S, Ghosigharehaghaji A, Bolat I, Sulukan E, Ceyhun S. An approach to evaluating the potential teratogenic and neurotoxic mechanism of BHA based on apoptosis induced by oxidative stress in zebrafish embryo (Danio rerio). Human and Experimental Toxicology. 2020; 1-14, https://doi.org/10.1177/0960327120952140

(20) Al-Shabib NA, Khan JM, Malik A, Sen P, Ramireddy S, Chinnappan S, Alamery SF, Shahzad, SA. Allura red rapidly induces amyloid-like fibril formation in hen egg white lysozyme at physiological pH. International Journal of Biological Macromolecules 2019: 127, 297–305. https://doi.org/10.1016/j.ijbiomac.2019.01.049

(21) Park S, Lee J, Lim W, You S, Song G. Butylated Hydroxyanisole Exerts Neurotoxic Effects by Promoting Cytosolic Calcium Accumulation and Endoplasmic Reticulum Stress in Astrocytes. Journal of Agricultural and Food Chemistry. 2019: 67, 34, 9618–96292019. https://doi.org/10.1021/acs.jafc.9b02899

(22) Doguc DK, Deniz F, İlhan İ, Ergonul E, Gultekin F. Prenatal exposure to artificial food colorings alters NMDA receptor subunit concentrations in rat hippocampus. Nutritional neuroscience. 2019: 24(10), 784–794. https://doi.org/10.1080/1028415X.2019.1681065

(23) Hsiao YP, Lai WW, Wu SB, Tsai CH, Tang SC, Chung JG, Yang JH. Activación de la muerte apoptótica de los queratinocitos epidérmicos humanos por ácido málico: participación del estrés del retículo endoplásmico y vías de señalización dependientes de las mitocondrias. Toxinas. 2015; 7 :81–96.

(24) Jae-Hyum K, Cleol-Su K, Rosa Mistica CI, Dong-Heui K, Ma Easter JS, Eun Ho M, Xu-Feng Q, Seong-Eun P, Yu-Ri K, Meyoung-Kim, Kyu-Jae L, Soo-Ki, K. Immunotoxicity of silicon dioxide nanoparticles wit different sizes and electrostatic charge. International Journal of Nanomedicine. 2014; (2):183-93. https://doi: 10.2147/IJN.S57934.

(25) EFSA. European Food Safety Authority. Areas tematicas. IDA, [internet]. 2022. [citado 2 de noviembre de 2022). Disponible en: https://www.efsa.europa.eu/es/glossary/adi

(26) NOM. Norma Oficial Mexicana 051-SCFI/SSA1-2010. [internet]. 2010. [citado 23 marzo de 2022). Disponible en: https://www.dof.gob.mx/normasOficiales/4010/seeco11_C/seeco11_C.htm#:~:text=Esta%20norma%20oficial,las%20caracter%C3%ADsticas%20de%20dicha%20informaci%C3%B3n.

(27) Carbajal-Sánchez JA, Ramírez-Durán N, Gamboa-Angulo M, Antonio Moreno-Pérez PA. Estado de la información del consumo en México de antioxidantes sintéticos en alimentos ultra - procesados, basados en los productos de la canasta básica. Estudios sociales. Revista de alimentación contemporánea y desarrollo regional. 2021; 3:1-18, https://doi:10.24836/es.v31i58.1143

(28) Mancini FR, Paul D, Gauvreau J, Volatier JL, Vin K. Hulin M. Dietary exposure to benzoates (E210–E213), parabens (E214–E219), nitrites (E249–E250), nitrates (E251–E252), BHA (E320), BHT (E321) and aspartame (E951) in children less than 3 years old in France. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment. 2015: 32(3), 293–306. https://doi.org/10.1080/19440049.2015.1007535

(29) Maziero GC, Baunwart M, Toledo MCF. Estimates of the theoretical maximum daily intake of phenolic antioxidants BHA, BHT and TBHQ in Brazil. Food Additives & Contaminants. 2010; 37–41. https://doi.org/10.1080/02652030120645

(30) Murawski A, Schmied-Tobies M, Rucic E, Schmidtkunz C, Küpper K, Leng G, Eckert E, Kuhlmann L, Göen T, Daniels A, Schwedler G, Kolossa-Gehring M. Metabolites of 4-methylbenzylidene camphor (4-MBC), butylated hydroxytoluene (BHT), and tris(2-ethylhexyl) trimellitate (TOTM) in urine of children and adolescents in Germany - human biomonitoring results of the German Environmental Survey GerES V (2014-2017). Environmental Research. 2021: 192. https://doi.org/10.1016/j.envres.2020.110345

(31) Wang W, Kannan K. Quantitative identification of and exposure to synthetic phenolic antioxidants, including butylated hydroxytoluene, in urine. Environment International. 2019: 128(April), 24–29. https://doi.org/10.1016/j.envint.2019.04.028

(32) FAO. Organización de las Naciones Unidas para la Alimentación y la Agricultura. La Seguridad Alimentaria: información para la toma de decisiones Guía práctica. Una introducción a los conceptos básicos de la seguridad alimentaria. [internet] 2011. [citado 23 agosto de 2022). Disponible en: https://www.fao.org/3/al936s/al936s00.pdf

Published

2023-02-01

How to Cite

Carbajal-Sánchez , J. A., & Moreno-Pérez, P. A. (2023). Food additives added to packaged or canned foods in Mexico, reliable information?. Spanish Journal of Human Nutrition and Dietetics, 27(1), 51–62. https://doi.org/10.14306/renhyd.27.1.1768