The bond between the endocannabinoid system and food addiction: a scoping review
DOI:
https://doi.org/10.14306/renhyd.25.2.1153Keywords:
Food Addiction, Feeding Behavior, Obesity, EndocannabinoidsAbstract
Introduction: food addiction is a disorder in which impairments in dopaminergic pathways in the central nervous system lead to feeding behavior disruptions that contribute to overweight and obesity. Currently it is unknown which compounds may cause the neurobiological impairments related to food addiction. Objective: to analyze the relationship between the endocannabinoid system and food addiction from the prism of neurobiological and behavioral changes related to psychoactive substances.
Material and methods: a scoping review of the available literature was conducted in database such as Cochrane, Pubmed, Embase and Google Scholar, using MeSH terms such as: food addiction, endocannabinoids, nutrition, nucleus accumbens, hypothalamus, cannabinoid receptor type 1 and feeding behavior, from which sixty nine bibliographic resources were included.
Results: the endocannabinoid system activation can modulate the neuroendocrine regulation of appetite and satiety in the hypothalamus and thus increasing food intake, the activity of this system over the nucleus accumbens can intensify the sensorial properties of palatable food (high fat and high sugar), besides enhancing dopamine release in mesolimbic and mesocortical dopaminergic pathways, which may be related to behavior disruptions as impulsivity, craving, abstinence syndrome, tolerance and others, identified in food addiction and substance use disorders.
Conclusions: food intake shown in people with food addiction may be associated with an increase of plasmatic levels of endocannabinoids agonists of cannabinoid receptor type 1, which would unravel a vicious circle that reinforce the palatable food intake originated in the stimulation of cerebral structures involved in dopaminergic pathways, and thus it would maintain an overactivation of the endocannabinoid system and would promote weight gain.
References
(1) Stanhope KL. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit Rev Clin Lab Sci. 2016;53(1):52-67. doi: 10.3109/10408363.2015.1084990.
(2) Mason SM, Flint AJ, Roberts AL, Agnew-Blais J, Koenen KC, Rich-Edwards JW. Posttraumatic stress disorder symptoms and food addiction in women, by timing and type of trauma exposure. JAMA psychiatry. 2014 Nov;71(11):1271–8.
(3) Canella DS, Levy RB, Martins AP, Claro RM, Moubarac JC, Baraldi LG, Cannon G, Monteiro CA. Ultra-processed food products and obesity in Brazilian households (2008-2009). PLoS One. 2014 Mar 25;9(3):e92752.
(4) Novotny R, Chen C, Williams AE, Albright CL, Nigg CR, Oshiro CE, Stevens VJ. US acculturation is associated with health behaviors and obesity, but not their change, with a hotel-based intervention among Asian-Pacific Islanders. J Acad Nutr Diet. 2012 May;112(5):649-56.
(5) Parylak SL, Koob GF, Zorrilla EP. The dark side of food addiction. Physiol Behav. 2011 Jul 25;104(1):149–56.
(6) Mitchell KS, Wolf EJ. PTSD, food addiction, and disordered eating in a sample of primarily older veterans: The mediating role of emotion regulation. Psychiatry Res. 2016 Sep 30;243:23–9.
(7) Randolph TG. The descriptive features of food addiction. Addictive eating and drinking. Q J Stud Alcohol. 1956;17:198–224.
(8) Gearhardt AN, Corbin WR, Brownell KD. Food Addiction. 2009;3(1):1–8.
(9) Gordon EL, Ariel-Donges AH, Bauman V, Merlo LJ. What is the evidence for “food addiction?” A systematic review. Nutrients. 2018;10(4):1–30.
(10) Pelchat ML. Food Addiction in Humans. J Nutr. 2009;139(3):620–2.
(11) Schulte EM, Gearhardt AN. Development of the Modified Yale Food Addiction Scale Version 2.0. Eur Eat Disord Rev. 2017 Mar 29;25(4):302–8.
(12) American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 2013.
(13) Leigh SJ, Morris MJ. The role of reward circuitry and food addiction in the obesity epidemic: An update. Biol Psychol. 2018;131:31–42.
(14) Dallman MF, Pecoraro N, Akana SF, la Fleur SE, Gomez F, Houshyar H, et al. Chronic stress and obesity: A new view of “comfort food.” Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11696–701.
(15) Pecoraro N, Reyes F, Gomez F, Bhargava A, Dallman MF. Chronic Stress Promotes Palatable Feeding, which Reduces Signs of Stress: Feedforward and Feedback Effects of Chronic Stress. Endocrinology. 2004 Aug 1;145(8):3754–62.
(16) Wiss DA, Criscitelli K, Gold M, Avena N. Preclinical evidence for the addiction potential of highly palatable foods: Current developments related to maternal influence. Appetite. 2017 Aug;115:19–27.
(17) Casajuana C, López-Pelayo H, Balcells MM, Colom J, Gual A. Constituyentes psicoactivos del cannabis y sus implicaciones clínicas: una revisión sistemática. Adicciones; Publicación en Av. 2017.
(18) Mechoulam R, Hanus LO, Pertwee R, Howlett AC. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci. 2014;15(11):757–64.
(19) Winstock AR, Barratt MJ. Synthetic cannabis: A comparison of patterns of use and effect profile with natural cannabis in a large global sample. Drug Alcohol Depend. 2013;131(1–3):106–11.
(20) Palomba L, Silvestri C, Imperatore R, Morello G, Piscitelli F, Martella A, et al. Negative Regulation of Leptin-induced Reactive Oxygen Species (ROS) Formation by Cannabinoid CB1 Receptor Activation in Hypothalamic Neurons. J Biol Chem. 2015;290(22):13669–77.
(21) Jager G, Witkamp RF. The endocannabinoid system and appetite: relevance for food reward. Nutr Res Rev. 2014;27(1):1–14.
(22) Isabel de Antonio, Sánchez-Blázquez. Captación de subunidades g[alfa] por células del snc. Análisis del mecanismo de internalización y estudio de su actividad funcional. Universidad Complutense De Madrid Facultad De Farmacia; 2001.
(23) Pardo L, Campillo M, Sanz F. The mechanism of G protein coupled receptor activation: the serotonin receptors Jessica Sallander. 2011;
(24) Pradhan S, Khatlani T, Nairn AC, Vijayan KV. The heterotrimeric G protein G B1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein coupled receptor signaling in platelets. J Biol Chem Publ en Av. 2017;
(25) Duc NM, Kim HR, Chung KY. Structural mechanism of G protein activation by G protein-coupled receptor. Eur J Pharmacol. 2015;763:214–22.
(26) Console-Bram L, Marcu J, Abood ME. Cannabinoid receptors: nomenclature and pharmacological principles. Prog Neuro-Psychopharmacology Biol Psychiatry. 2012 Jul 2;38(1):4–15.
(27) López-Jaramillo P, Pradilla LP, Bracho Y, Silva F. El sistema endocannabinoide y su relación con la obesidad abdominal y el síndrome metabólico: implicaciones terapéuticas. 2005;12(3):113–21.
(28) Latek D, Kolinski M, Ghoshdastider U, Debinski A, Bombolewski R, Plazinska A, et al. Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic $β$2AR. J Mol Model. 2011;17(9):2353–66.
(29) Niaz K, Khan F, Maqbool F, Momtaz S, Ismail F, Nobakht-haghighi N, et al. Endocannabinoids system and the toxicity of cannabinoids with a biotechnological approach. EXCLI J. 2017;16:688–711.
(30) Xie Y, Dorsky RI. Development of the hypothalamus: conservation, modification and innovation. Development. 2017 May 2;144(9):1588 LP – 1599.
(31) Romero-Zerbo SY, Bermúdez-Silva FJ. Cannabinoids, eating behaviour, and energy homeostasis. Drug Test Anal. 2014;6(1–2):52–8.
(32) Monteleone P, Piscitelli F, Scognamiglio P, Monteleone AM, Canestrelli B, Di Marzo V, et al. Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: A pilot study. J Clin Endocrinol Metab. 2012;97(6):E917–E924.
(33) Lim CT, Kola B, Feltrin D, Perez-Tilve D, Tschöp MH, Grossman AB, et al. Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolism. Mol Cell Endocrinol. 2013;365(2):303–8.
(34) Senin LL, Al-Massadi O, Folgueira C, Castelao C, Pardo M, Barja-Fernandez S, et al. The gastric CB1 receptor modulates ghrelin production through the mTOR pathway to regulate food intake. PLoS One. 2013;8(11):e80339.
(35) Ting CH, Chi CW, Li CP, Chen CY. Differential modulation of endogenous cannabinoid CB1 and CB2 receptors in spontaneous and splice variants of ghrelin-induced food intake in conscious rats. Nutrition. 2015;31(1):230–5.
(36) Silvestri C, Di Marzo V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 2013;17(4):475–90.
(37) Bermudez-Silva FJ, Romero-Zerbo SY, Haissaguerre M, Ruz-Maldonado I, Lhamyani S, El Bekay R, et al. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice. Dis Model Mech. 2016;9(1):51–61.
(38) Muniyappa R, Sable S, Ouwerkerk R, Mari A, Gharib A, Walter M, et al. Metabolic Effects of Chronic Cannabis. Diabetes Care. 2013;36:2415–22.
(39) Perello M, Sakata I, Birnbaum S, Chuang J-C, Osborne-Lawrence S, Rovinsky SA, et al. Ghrelin increases the rewarding value of high fat diet in an orexin-dependent manner. Biol Psychiatry. 2010 May 1;67(9):880–6.
(40) Egecioglu E, Jerlhag E, Salomé N, Skibicka KP, Haage D, Bohlooly-Y M, et al. Ghrelin increases intake of rewarding food in rodents. Addict Biol. 2010 Jun 9;15(3):304–11.
(41) Figlewicz DP, Bennett-Jay JL, Kittleson S, Sipols AJ, Zavosh A. Sucrose self-administration and CNS activation in the rat. Am J Physiol - Regul Integr Comp Physiol. 2011 Apr 9;300(4):R876–84.
(42) Woods CA, Guttman ZR, Huang D, Kolaric RA, Rabinowitsch AI, Jones KT, et al. Insulin receptor activation in the nucleus accumbens reflects nutritive value of a recently ingested meal. Physiol Behav. 2016 May;159:52–63.
(43) Bosier B, Bellocchio L, Metna-Laurent M, Soria-Gomez E, Matias I, Hebert-Chatelain E, et al. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes. Mol Metab. 2013;2(4):393–404.
(44) Al-Suhaimi EA, Shehzad A. Leptin, resistin and visfatin: The missing link between endocrine metabolic disorders and immunity. Eur J Med Res. 2013;18(1):1–13.
(45) Carranza Quispe LE. Fisiología del Apetito y el Hambre. Enfermería Investig Vinculación, Docencia y Gestión. 2016;1(3):117–24.
(46) Lage R, Parisi C, Seoane-Collazo P, Fernø J, Mazza R, Bosch F, et al. Lack of hypophagia in CB1 null mice is associated to decreased Hypothalamic POMC and CART. Int J Neuropsychopharmacol. 2015;18(9):1–6.
(47) Merroun I, El Mlili N, Martinez R, Porres JM, Llopis J, Ahabrach H, Aranda P, Sanchez Gonzalez C, Errami M L-JM. Interaction between orexin A and cannabinoid system in the lateral hypothalamus of rats and effects of subchronic intraperitoneal administration of cannabinoid receptor inverse agonist on food intake and the nutritive utilization of protein. J Physiol Pharmacol. 2015;66(2):181–90.
(48) Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PRA. The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci. 2015 May;16(5):305–12.
(49) Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci. 2015;16(10):579–94.
(50) Lutter M, Nestler EJ. Homeostatic and Hedonic Signals Interact in the Regulation of Food Intake. J Nutr. 2009;139(3):629–32.
(51) Guegan T, Cutando L, Gangarossa G, Santini E, Fisone G, Martinez A, et al. Operant behavior to obtain palatable food modifies ERK activity in the brain reward circuit. Eur Neuropsychopharmacol. 2013;23(3):240–52.
(52) Cortés-Salazar F, Suárez Ortíz JO, Cendejas Trejo NM, Mancilla-Díaz JM, López-Alonso VE, Escartín-Pérez RE. Effects of CB1 cannabinoid receptor activation in the nucleus accumbens shell on feeding behavior. Acta Colomb Psicol. 2014;17(2):61–8.
(53) Amancio Belmont O, Romano López A, Ruiz Contreras AE, Méndez Díaz M,Próspero García O. From adolescent to elder rats: Motivation for palatable food and cannabinoids receptors. Dev Neurobiol. 2017;(February 2017).
(54) Zhang X, Feng ZJ, Chergui K. Induction of cannabinoid- and N-methyl-d-aspartate receptor-mediated long-term depression in the nucleus accumbens and dorsolateral striatum is region and age dependent. Int J Neuropsychopharmacol. 2014;18(4):1–9.
(55) Friemel CM, Zimmer A, Schneider M. The CB1 receptor as an important mediator of hedonic reward processing. Neuropsychopharmacology. 2014;39(10):2387–96.
(56) Arias-Carrión O, Stamelou M, Murillo-Rodríguez E, Menéndez-Gonzlez M, Pöppel E. Dopaminergic reward system: A short integrative review. Int Arch Med. 2010;3(1).
(57) Torres G, Fiestas F. Efectos de la marihuana en la cognición: Una revisión desde la perspectiva neurobiológica. Rev Peru Med Exp Salud Publica. 2012;29(1):127–34.
(58) Volkow ND, Koob GF, McLellan AT. Neurobiologic Advances from the Brain Disease Model of Addiction. N Engl J Med. 2016;374(4):363–71.
(59) Volkow ND, Wise RA, Baler R. The dopamine motive system: Implications for drug and food addiction. Nat Rev Neurosci. 2017;18(12):741–52.
(60) Volkow N, Wang G, Fowler JS, Tomasi D, Baler R. Food and Drug Reward: Overlapping Circuits in Human Obesity and Addiction. Vol. 11, Current topics in behavioral neurosciences. 2011. 1–24 p.
(61) Carlin J, Hill-Smith TE, Lucki I, Reyes TM. Reversal of dopamine system dysfunction in response to high fat diet. Obesity (Silver Spring). 2013 Dec 29;21(12):2513–21.
(62) Naneix F, Darlot F, Coutureau E, Cador M. Long-lasting deficits in hedonic and nucleus accumbens reactivity to sweet rewards by sugar overconsumption during adolescence. Eur J Neurosci. 2016 Jan 13;43(5):671–80.
(63) Ahmed S, Avena NM, Kent B, Gearhardt AN, Guillem K. Food Addiction. In: Neuroscience in the 21st Century: From Basic to Clinical. 2013. p. 1–3111.
(64) Naughton S, Hanson E, Mathai M, McAinch A. The Acute Effect of Oleic- or Linoleic Acid-Containing Meals on Appetite and Metabolic Markers; A Pilot Study in Overweight or Obese Individuals. Nutrients. 2018;10(10):1376.
(65) Murataeva N, Straiker A, MacKie K. Parsing the players: 2-arachidonoylglycerol synthesis and degradation in the CNS. Br J Pharmacol. 2014;171(6):1379–91.
(66) Orsavova J, Misurcova L, Vavra Ambrozova J, Vicha R, Mlcek J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int J Mol Sci. 2015;16(6):12871–90.
(67) Bisogno T, Maccarrone M. Endocannabinoid signaling and its regulation by nutrients. BioFactors. 2014;40(4):373–80.
(68) Tallima H, El Ridi R. Arachidonic acid: Physiological roles and potential health benefits. J Adv Res. 2018;11:33–41.
(69) Cortés C, Baez B, Zamora-ginez I, Bilbao T, Cebada J, Galicia S, et al. Regulación de la ingesta de alimento: una aproximación al sistema endocannabinoide. Acad Biomédica Digit. 2015;61.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Juan Pablo Morales Basto, Evelin Dayana Burgos Castro, Diego Alejandro Fandiño Sánchez, Luis Felipe Porras Galindo, Daimar Santiago Rodríguez Munevar, Samantha Agudelo Cañas, Elpidia Poveda Espinosa
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.