Accuracy of predictive equations for basal energy expenditure prediction: a cross-sectional study in children and adolescents with overweight and obesity of Morelos, Mexico
DOI:
https://doi.org/10.14306/renhyd.23.2.706Keywords:
Energy Metabolism, Calorimetry, Indirect, Anthropometry, Body Composition, Overweight, Obesity.Abstract
Introduction: The knowledge of basal energy expenditure measurement is essential for prescription of nutritional interventions in children and adolescents with obesity, in order to improve their nutritional status. Aim: Assess the accuracy prediction of diverse equations to estimate basal energy expenditure in comparison with indirect in children with overweight and obesity in Morelos, Mexico.
Material and methods: Cross-sectional study in children and adolescents with overweight or obesity. Body weight, height and body composition by air-displacement plethysmography were measured. Basal energy expenditure was measured by indirect calorimetry and predicted by diverse equations; FAO/OMS, Harris Benedict, Tverskaya, Schofield, Mifflin St Jeor and Lazzer.
Results: Eighty four patients of 11.3 ± 3.2 years old were included. By BMI, 20% were overweight and 80% obese. No statistical differences were observed in body composition parameters between boys and girls. Harris Benedict and Mifflin St. Jeor equations show the best accuracy and agreement.
Conclusion: Equations did not accurately predict basal energy expenditure in the study sample. It is needed to develop specific equations particularly in obese population.
References
(1) Zylke JW, Bauchner H. Preventing Obesity in Children: A Glimmer of Hope. JAMA 2018;320:443–4. doi:10.1001/jama.2018.9442.
(2) Shamah-Levy T, Cuevas-Nasu L, Gaona-Pineda EB, Gómez-Acosta LM, Morales-Rúan MDC, Hernández-Ávila M, et al. [Overweight and obesity in children and adolescents, 2016 Halfway National Health and Nutrition Survey update]. Salud Publica Mex 2018;60:244–53. doi:10.21149/8815.
(3) Yeste D, Carrascosa A. El manejo de la obesidad en la infancia y adolescencia: de la dieta a la cirugía. Endocrinol Nutr 2012;59:403–6. doi:10.1016/j.endonu.2012.03.013.
(4) Hruby A, Hu FB. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015;33:673–89. doi:10.1007/s40273-014-0243-x.
(5) Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci 2017;13:851–63. doi:10.5114/aoms.2016.58928.
(6) Haugen HA, Chan L-N, Li F. Indirect calorimetry: a practical guide for clinicians. Nutr Clin Pract 2007;22:377–88. doi:10.1177/0115426507022004377.
(7) Puhl JL. Energy Expenditure among Children: Implications for Childhood Obesity I: Resting and Dietary Energy Expenditure. Pediatric Exercise Science 1989;1:212–29. doi:10.1123/pes.1.3.212.
(8) Compher C, Frankenfield D, Keim N, Roth-Yousey L, Evidence Analysis Working Group. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc 2006;106:881–903. doi:10.1016/j.jada.2006.02.009.
(9) Carpenter A, Pencharz P, Mouzaki M. Accurate estimation of energy requirements of young patients. J Pediatr Gastroenterol Nutr 2015;60:4–10. doi:10.1097/MPG.0000000000000572.
(10) World health Organization. BMI-for-age (5-19 years). 2007. En: http://www.who.int/growthref/who2007_bmi_for_age/en/ (accessed June 25, 2019).
(11) Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation. World Health Organ Tech Rep Ser 1985;724:1–206.
(12) Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 1985;39 Suppl 1:5–41.
(13) Harris JA, Benedict FG. A Biometric Study of Human Basal Metabolism. Proc Natl Acad Sci U S A 1918;4:370–3.
(14) Tverskaya R, Rising R, Brown D, Lifshitz F. Comparison of several equations and derivation of a new equation for calculating basal metabolic rate in obese children. J Am Coll Nutr 1998;17:333–6.
(15) Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr 1990;51:241–7. doi:10.1093/ajcn/51.2.241.
(16) Lazzer S, Agosti F, De Col A, Sartorio A. Development and cross-validation of prediction equations for estimating resting energy expenditure in severely obese Caucasian children and adolescents. Br J Nutr 2006;96:973–9.
(17) Vergara FV, Bustos ED, Marques LL, Flores LV, Gonzalez AA, Argote RB. The four-compartment model of body composition in obese Chilean schoolchildren, by pubertal stage: comparison with simpler models. Nutrition 2014;30:305–12. doi:10.1016/j.nut.2013.09.002.
(18) McDuffie JR, Adler-Wailes DC, Elberg J, Steinberg EN, Fallon EM, Tershakovec AM, et al. Prediction equations for resting energy expenditure in overweight and normal-weight black and white children. Am J Clin Nutr 2004;80:365–73. doi:10.1093/ajcn/80.2.365.
(19) Schmelzle H, Schröder C, Armbrust S, Unverzagt S, Fusch C. Resting energy expenditure in obese children aged 4 to 15 years: Measured versus predicted data. Acta Paediatrica 2004;93:739–46. doi:10.1111/j.1651-2227.2004.tb01000.x.
(20) Klein CJ, Villavicencio SA, Schweitzer A, Bethepu JS, Hoffman HJ, Mirza NM. Energy Prediction Equations Are Inadequate for Obese Hispanic Youth. Journal of the American Dietetic Association 2011;111:1204–10. doi:10.1016/j.jada.2011.05.010.
(21) de Oliveira BAP, Nicoletti CF, Gardim CB, de Andrade VL, Freitas Júnior IF. Comparisons between predictive equations of resting metabolic rate and indirect calorimetry in obese teenagers. Revista Chilena de Nutrición 2014;41.
(22) Azcona C, Köek N, Frühbeck G. Fat mass by air-displacement plethysmography and impedance in obese/non-obese children and adolescents. Int J Pediatr Obes 2006;1:176–82.
(23) Lazzer S, Agosti F, De Col A, Mornati D, Sartorio MD A. Comparison of predictive equations for resting energy expenditure in severely obese Caucasian children and adolescents. J Endocrinol Invest 2007;30:313–7. doi:10.1007/BF03346298.
(24) Steinberg A, Manlhiot C, Cordeiro K, Chapman K, Pencharz PB, McCrindle BW, et al. Determining the accuracy of predictive energy expenditure (PREE) equations in severely obese adolescents. Clinical Nutrition 2017;36:1158–64. doi:10.1016/j.clnu.2016.08.006.
(25) Henes ST, Cummings DM, Hickner RC, Houmard JA, Kolasa KM, Lazorick S, et al. Comparison of predictive equations and measured resting energy expenditure among obese youth attending a pediatric healthy weight clinic: one size does not fit all. Nutr Clin Pract 2013;28:617–24. doi:10.1177/0884533613497237.
(26) Acar-Tek N, Ağagündüz D, Çelik B, Bozbulut R. Estimation of Resting Energy Expenditure: Validation of Previous and New Predictive Equations in Obese Children and Adolescents. J Am Coll Nutr 2017;36:470–80. doi:10.1080/07315724.2017.1320952.
(27) Balas-Nakash M, Villanueva-Quintana A, Vadillo-Ortega F, Perichart-Perera O. [Validation of resting metabolic rate estimation equations in 9- to 12- year-old Mexican children with and without obesity]. Rev Invest Clin 2008;60:395–402.
(28) Becerril-Sánchez ME, Flores-Reyes M, Ramos-Ibáñez N, Ortiz-Hernández L. Ecuaciones de predicción del gasto de energía en reposo en escolares de la Ciudad de México. Acta Pediátrica de México 2015;36:147–57.
(29) Ginde SR, Geliebter A, Rubiano F, Silva AM, Wang J, Heshka S, et al. Air displacement plethysmography: validation in overweight and obese subjects. Obes Res 2005;13:1232–7. doi:10.1038/oby.2005.146.