Influence of low energy availability and negative energy balance on exercise-induced inflammation and sexual hormones changes of athletes: A systematic review

Authors

  • César Iván Ayala-Guzmán Departamento de Atención a la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, Mexico. http://orcid.org/0000-0002-7929-1765
  • Luis Ortiz-Hernandez Departamento de Atención a la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, Mexico. http://orcid.org/0000-0002-5870-1729
  • Oralia Najera Medina Departamento de Atención a la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, Mexico. http://orcid.org/0000-0003-2166-3770

DOI:

https://doi.org/10.14306/renhyd.25.S1.1175

Keywords:

Athletes, Exercise, Relative Energy Deficiency in Sport, Energy Metabolism, Inflammation, Hormones, Gonadal Steroid Hormones, inflammatory response

Abstract

Introduction: The aim of this study was to examine differences between negative energy balance (EB) or low energy availability (EA) on athletes' exercise-induced inflammation (EII) and sexual hormone changes (SHC), and according to participants' sports experience.

Material and methods: Data sources: Medline, Science Direct, SciELO, ProQuest, and EBSCOhost databases were searched for articles published between 1986 and 2020. Study selection: Articles were included if they were carried out with healthy adult athletes of different levels of sports experience, in which the association of negative EB and low EA with SHC and with EII was evaluated. Study Appraisal and Synthesis: Of 198 records identified, 61 studies were assessed, and 26 documents met the inclusion criteria.

Results: Similar associations between EB and EA (directly measured) with basal concentrations of testosterone, TNF-α, and amenorrhea's presence, but not with estradiol and IL-6, were obtained. EA (directly measured), compared to low EA surrogates, was associated with SHC in fewer studies (6 versus 11). At rest, highly trained athletes with low EB or low EA, compared to their counterparts with an adequate energy intake, showed lower levels of LH and estradiol, but not of progesterone and IL-6; although inconsistent results of testosterone, FSH, TNF-α, and amenorrhea's presence.

Conclusions: The methodology for evaluating or interpreting EB or EA and biomarkers seems to determine differences between the studies' results. Sports experience may influence EII or SHC of athletes with low EA or negative EB.

Author Biographies

Luis Ortiz-Hernandez, Departamento de Atención a la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, Mexico.

Profesor-investigador, Departamento de Atención a la Salud

Oralia Najera Medina, Departamento de Atención a la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, Mexico.

Profesora-investigadora, Departamento de Atención a la Salud

References

(1) Mountjoy M, Sundgot-Borgen J, Burke L, Ackerman KE, Blauwet C, Constantini N, et al. International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Br J Sports Med. 2018; 52(11):687-697.

(2) Westerterp KR. Exercise, energy balance and body composition. Eur J Clin Nutr. 2018; 72(9):1246-50.

(3) Burke LM, Lundy B, Fahrenholtz IL, Melin AK. Pitfalls of Conducting and Interpreting Estimates of Energy Availability in Free-Living Athletes. Int J Sport Nutr Exerc Metab. 2018; 28(4):350-63.

(4) Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, et al. The IOC consensus statement: beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491-7.

(5) Melin AK, Heikura IA, Tenforde A, Mountjoy M. Energy Availability in Athletics: Health, Performance, and Physique. Int J Sport Nutr Exerc Metab. 2019; 29(2):152-64.

(6) Bermon S, Castell LM, Calder PC, Bishop NC, Blomstrand E, Mooren FC, et al. Consensus Statement Immunonutrition and Exercise. Exerc Immunol Rev. 2017;23:8-50.

(7) Ackerman KE, Stellingwerff T, Elliott-Sale KJ, Baltzell A, Cain M, Goucher K, et al. #REDS (Relative Energy Deficiency in Sport): time for a revolution in sports culture and systems to improve athlete health and performance. Br J Sports Med. 2020;54(7):369-70.

(8) Elliott-Sale KJ, Tenforde AS, Parziale AL, Holtzman B, Ackerman KE. Endocrine Effects of Relative Energy Deficiency in Sport. Int J Sport Nutr Exerc Metab. 2018; 28(4):335-49.

(9) Fragala MS, Kraemer WJ, Denegar CR, Maresh CM, Mastro AM, Volek JS. Neuroendocrine-immune interactions and responses to exercise. Sports Med. 2011;41(8):621-39.

(10) Wong HK, Hoermann R, Grossmann M. Reversible male hypogonadotropic hypogonadism due to energy deficit. Clin Endocrinol (Oxf). 2019;91(1):3-9.

(11) Passos BN, Lima MC, Sierra APR, Oliveira RA, Maciel JFS, Manoel R, et al. Association of Daily Dietary Intake and Inflammation Induced by Marathon Race. Mediators Inflamm. 2019; 2019:1537274.

(12) Hackney AC. Hypogonadism in Exercising Males: Dysfunction or Adaptive-Regulatory Adjustment? Front Endocrinol (Lausanne). 2020; 11:11.

(13) Kreher JB, Schwartz JB. Overtraining syndrome: a practical guide. Sports health. 2012;4(2):128-38.

(14) Sarin HV, Gudelj I, Honkanen J, Ihalainen JK, Vuorela A, Lee JH, et al. Molecular Pathways Mediating Immunosuppression in Response to Prolonged Intensive Physical Training, Low-Energy Availability, and Intensive Weight Loss. Front Immunol. 2019; 10:907.

(15) Malm C. Exercise-induced muscle damage and inflammation: fact or fiction? Acta Physiol Scand. 2001; 171(3):233-9.

(16) Hackney AC, Koltun KJ. The immune system and overtraining in athletes: clinical implications. Acta Clin Croat. 2012; 51(4):633-41.

(17) Elenkov IJ, Chrousos GP. Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci. 2002; 966:290-303.

(18) Philippou A, Maridaki M, Psarros C, Koutsilieris M. Systemic Responses of Inflammation-Related Factors Following Eccentric Exercise in Humans. AJSS. 2018;6(2):32-7.

(19) Filella X, Molina R, Ballesta AM. Estructura y función de las citocinas. Medicina Integral. 2002;39(2):63-71.

(20) Scheffer DDL, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165823.

(21) Logue D, Madigan SM, Delahunt E, Heinen M, Mc Donnell S-J, Corish CA. Low Energy Availability in Athletes: A Review of Prevalence, Dietary Patterns, Physiological Health, and Sports Performance. Sports Med. 2018;48(1):73-96.

(22) Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100-e.

(23) Staal S, Sjödin A, Fahrenholtz I, Bonnesen K, Melin AK. Low RMR(ratio) as a Surrogate Marker for Energy Deficiency, the Choice of Predictive Equation Vital for Correctly Identifying Male and Female Ballet Dancers at Risk. Int J Sport Nutr Exerc Metab. 2018;28(4):412-8.

(24) Suzuki K. Cytokine Response to Exercise and Its Modulation. Antioxidants (Basel). 2018;7(1):17.

(25) González IG, Urrútia G, Alonso-Coello P. Enfoque: Métodos contemporáneos en bioestadística (III). Revisiones sistemáticas y metaanálisis: bases conceptuales e interpretación. Rev Esp Cardiol. 2011;64(8):688-96.

(26) Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, Currie M, Qureshi R, Mattis P, Lisy K, Mu P-F. Chapter 7: Systematic reviews of etiology and risk. En: Aromataris E, Munn Z (Editors). JBI Manual for Evidence Synthesis. JBI, 2020. Disponible en: https://jbi.global/critical-appraisal-tools

(27) Pollock A, Berge E. How to do a systematic review. Int J Stroke. 2018;13(2):138-56.

(28) MacConnie SE, Barkan A, Lampman RM, Schork MA, Beitins IZ. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med. 1986;315(7):411-7.

(29) Sygo J, Coates AM, Sesbreno E, Mountjoy ML, Burr JF. Prevalence of Indicators of Low Energy Availability in Elite Female Sprinters. Int J Sport Nutr Exerc Metab. 2018;28(5):490-6.

(30) Hooper DR, Kraemer WJ, Saenz C, Schill KE, Focht BC, Volek JS. The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition. Eur J Appl Physiol. 2017;117(7):1349-57.

(31) Laughlin GA, Yen SS. Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab. 1996;81(12):4301-9.

(32) Cialdella-Kam L, Guebels CP, Maddalozzo GF, Manore MM. Dietary intervention restored menses in female athletes with exercise-associated menstrual dysfunction with limited impact on bone and muscle health. Nutrients. 2014;6(8):3018-39.

(33) Melin A, Tornberg AB, Skouby S, Moller SS, Sundgot-Borgen J, Faber J, et al. Energy availability and the female athlete triad in elite endurance athletes. Scand J Med Sci Sports. 2015;25(5):610-22.

(34) McColl EM, Wheeler GD, Gomes P, Bhambhani Y, Cumming DC. The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin Endocrinol (Oxf). 1989;31(5):617-21.

(35) Shimizu K, Suzuki N, Nakamura M, Aizawa K, Imai T, Suzuki S, et al. Mucosal immune function comparison between amenorrheic and eumenorrheic distance runners. J Strength Cond Res. 2012;26(5):1402-6.

(36) Tornberg ÅB, Melin A, Koivula FM, Johansson A, Skouby S, Faber J, et al. Reduced Neuromuscular Performance in Amenorrheic Elite Endurance Athletes. Med Sci Sports Exerc. 2017;49(12):2478-85.

(37) Meng K, Qiu J, Benardot D, Carr A, Yi L, Wang J, et al. The risk of low energy availability in Chinese elite and recreational female aesthetic sports athletes. J Int Soc Sports Nutr. 2020;17(1):13.

(38) Heikura IA, Uusitalo ALT, Stellingwerff T, Bergland D, Mero AA, Burke LM. Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):403-11.

(39) Black K, Slater J, Brown RC, Cooke R. Low Energy Availability, Plasma Lipids, and Hormonal Profiles of Recreational Athletes. J Strength Cond Res. 2018;32(10):2816-24.

(40) Kurgan N, Logan-Sprenger H, Falk B, Klentrou P. Bone and Inflammatory Responses to Training in Female Rowers over an Olympic Year. Med Sci Sports Exerc. 2018;50(9):1810-7.

(41) Melin A, Tornberg ÅB, Skouby S, Møller SS, Faber J, Sundgot-Borgen J, et al. Low-energy density and high fiber intake are dietary concerns in female endurance athletes. Scand J Med Sci Sports. 2016;26(9):1060-71.

(42) Cobb KL, Bachrach LK, Greendale G, Marcus R, Neer RM, Nieves J, et al. Disordered eating, menstrual irregularity, and bone mineral density in female runners. Med Sci Sports Exerc. 2003;35(5):711-9.

(43) Schaal K, Van Loan MD, Casazza GA. Reduced catecholamine response to exercise in amenorrheic athletes. Med Sci Sports Exerc. 2011;43(1):34-43.

(44) Abedelmalek S, Chtourou H, Souissi N, Tabka Z. Caloric Restriction Effect on Proinflammatory Cytokines, Growth Hormone, and Steroid Hormone Concentrations during Exercise in Judokas. Oxid Med Cell Longev. 2015;2015:809492.

(45) Mäestu J, Eliakim A, Jürim.e J, Valter I, Jürim.e T. Anabolic and catabolic hormones and energy balance of the male bodybuilders during the preparation for the competition. J Strength Cond Res. 2010;24(4):1074-81.

(46) Degoutte F, Jouanel P, Bègue RJ, Colombier M, Lac G, Pequignot JM, et al. Food restriction, performance, biochemical, psychological, and endocrine changes in judo athletes. Int J Sports Med. 2006;27(1):9-18.

(47) Torstveit MK, Fahrenholtz I, Stenqvist TB, Sylta O, Melin A. Within-Day Energy Deficiency and Metabolic Perturbation in Male Endurance Athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):419-27.

(48) Fahrenholtz IL, Sjödin A, Benardot D, Tornberg Å B, Skouby S, Faber J, et al. Within-day energy deficiency and reproductive function in female endurance athletes. Scand J Med Sci Sports. 2018;28(3):1139-46.

(49) Rämson R, Jürim.e J, Jürim.e T, Mäestu J. The influence of increased training volume on cytokines and ghrelin concentration in college level male rowers. Eur J Appl Physiol. 2008;104(5):839-46.

(50) Civil R, Lamb A, Loosmore D, Ross L, Livingstone K, Strachan F, et al. Assessment of Dietary Intake, Energy Status, and Factors Associated With RED-S in Vocational Female Ballet Students. Front Nutr. 2018;5:136.

(51) Silva AM, Matias CN, Santos DA, Thomas D, Bosy-Westphal A, Müller MJ, et al. Energy Balance over One Athletic Season. Med Sci Sports Exerc. 2017;49(8):1724-33.

(52) Larson-Meyer DE, Woolf K, Burke L. Assessment of Nutrient Status in Athletes and the Need for Supplementation. Int J Sport Nutr Exerc Metab. 2018;28(2):139-58.

(53) Moshfegh AJ, Rhodes DG, Baer DJ, Murayi T, Clemens JC, Rumpler WV, et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. The American journal of clinical nutrition. 2008;88(2):324-32.

(54) Kirkpatrick SI, Subar AF, Douglass D, Zimmerman TP, Thompson FE, Kahle LL, et al. Performance of the Automated Self-Administered 24-hour Recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. The American journal of clinical nutrition. 2014;100(1):233-40.

(55) Thompson FE, Dixit-Joshi S, Potischman N, Dodd KW, Kirkpatrick SI, Kushi LH, et al. Comparison of Interviewer-Administered and Automated Self-Administered 24-Hour Dietary Recalls in 3 Diverse Integrated Health Systems. Am J Epidemiol. 2015;181(12):970-8.

(56) Kirkpatrick SI, Potischman N, Dodd KW, Douglass D, Zimmerman TP, Kahle LL, et al. The Use of Digital Images in 24-Hour Recalls May Lead to Less Misestimation of Portion Size Compared with Traditional Interviewer-Administered Recalls. J Nutr. 2016;146(12):2567-73.

(57) Thurlow S, Oldroyd B, Hind K. Effect of Hand Positioning on DXA Total and Regional Bone and Body Composition Parameters, Precision Error, and Least Significant Change. J Clin Densitom. 2018;21(3):375-82.

(58) Nana A, Slater GJ, Hopkins WG, Burke LM. Techniques for undertaking dual-energy Xray absorptiometry whole-body scans to estimate body composition in tall and/or broad subjects. Int J Sport Nutr Exerc Metab. 2012;22(5):313-22.

(59) Shiel F, Persson C, Furness J, Simas V, Pope R, Climstein M, et al. Dual energy X-ray absorptiometry positioning protocols in assessing body composition: A systematic review of the literature. J Sci Med Sport. 2018;21(10):1038-44.

(60) Shimizu K, Suzuki N, Nakamura M, Aizawa K, Imai T, Suzuki S, et al. Mucosal immune function comparison between amenorrheic and eumenorrheic distance runners. J Strength Cond Res. 2012;26(5):1402-6.

(61) Urdampilleta A, Martínez-Sanz JM, Lopez-Grueso R. Valoración bioquímica del entrenamiento: herramienta para el dietista-nutricionista deportivo. Rev Esp Nutr Hum Diet. 2013;17(2):73-83.

(62) Hooper DR, Kraemer WJ, Stearns RL, Kupchak BR, Volk BM, DuPont WH, et al. Evidence of the Exercise-Hypogonadal Male Condition at the 2011 Kona Ironman World Championships. Int J Sports Physiol Perform. 2019;14(2):170-5.

(63) Burden RJ, Pedlar CR, Lewis NA. Biomarkers in elite sport: Where innovations in technology and application combine. Exp Physiol. 2019;104(3):275-7.

(64) Lee EC, Fragala MS, Kavouras SA, Queen RM, Pryor JL, Casa DJ. Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes. J Strength Cond Res. 2017;31(10):2920-37.

(65) Roupas ND, Mamali I, Maragkos S, Leonidou L, Armeni AK, Markantes GK, et al. The effect of prolonged aerobic exercise on serum adipokine levels during an ultra-marathon endurance race. Hormones (Athens). 2013;12(2):275-82.

(66) Allen J, Sun Y, Woods JA. Exercise and the Regulation of Inflamatory Respones. Prog Mol Biol Transl Sci. 2015;135:337-54.

(67) Silva AM, Matias CN, Santos DA, Thomas D, Bosy-Westphal A, MüLler MJ, et al. Compensatory Changes in Energy Balance Regulation over One Athletic Season. Med Sci Sports Exerc. 2017;49(6):1229-35.

(68) Walker AJ, McFadden BA, Sanders DJ, Rabideau MM, Hofacker ML, Arent SM. Biomarker Response to a Competitive Season in Division I Female Soccer Players. J Strength Cond Res. 2019;33(10):2622-8.

(69) San-Millán I. Blood Biomarkers in Sports Medicine and Performance and the Future of Metabolomics. En: D'Alessandro A, editor. High-Throughput Metabolomics. Methods and protocols. New York, USA: Humana Press; 2019. p. 431-46.

(70) Melin A, Tornberg AB, Skouby S, Faber J, Ritz C, Sjodin A, et al. The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad. Br J Sports Med. 2014;48(7):540-5.

(71) De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, et al. 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play of the Female Athlete Triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. Br J Sports Med. 2014;48(4):289

(72) Loucks AB, Kiens B, Wright HH. Energy availability in athletes. J Sports Sci. 2011;29(1):S7-15.

Published

2021-10-10

How to Cite

Ayala-Guzmán, C. I., Ortiz-Hernandez, L., & Najera Medina, O. (2021). Influence of low energy availability and negative energy balance on exercise-induced inflammation and sexual hormones changes of athletes: A systematic review. Spanish Journal of Human Nutrition and Dietetics, 25(Supl. 1), e1175. https://doi.org/10.14306/renhyd.25.S1.1175

Most read articles by the same author(s)