Cáscaras de frutas y vegetales como ingrediente en pan: aporte nutricional, saciedad y preferencia sensorial
Análisis de pan con cáscaras como ingrediente
DOI:
https://doi.org/10.14306/renhyd.26.S1.1467%20Palabras clave:
cáscaras, pan, saciedad, preferencia, sensorial, fibra diet´etica, análisis químicoResumen
Introducción: Se entiende por “desperdicio” de alimentos a las pérdidas derivadas de la decisión de desechar aquellos que todavía tienen valor, o a partes de ellos, y se asocia principalmente con ventas minoristas y consumidores. Dentro de los “desperdicios” se encuentran las cáscaras de vegetales, que se pueden rescatar e incluir como ingredientes en alimentos procesados.
Metodología: Se elaboraron muestras de pan de molde cuya formulación base fue harina, aceite, levadura, sal, azúcar y agua. Se reemplazó 10% de la harina de trigo por harinas de cáscaras de manzana, zanahoria y zapallo (P2, P3 y P4 respectivamente). Las cáscaras de los vegetales se lavaron exhaustivamente, se deshidrataron a 60° por 12 horas y se molieron hasta obtener un polvo fino. Se elaboraron muestras de pan amasando la mezcla de ingredientes por 15 minutos, se dejó fermentar y luego se hornearon a 180°C por 50 minutos. Se determinó pérdida por cocción, composición nutricional, azúcares totales y aporte calórico. Las muestras de pan fueron evaluadas por 15 sujetos para conocer el cociente de saciedad y por 60 sujetos para establecer la preferencia sensorial.
Resultados: La incorporación de harina cáscaras de vegetales no modificó, el contenido de proteínas, grasa total ni hidratos de carbono disponibles. La muestra P2 presentó el contenido de azúcares totales significativamente mayor (p<0,05), la fibra dietética fue mayor en todas las muestras con cáscaras de vegetales respecto a la muestra control (P1), y el contenido de energía disminuyó significativamente (p<0,05) en las muestras de pan con harina de cáscaras de vegetales.
El coeficiente de saciedad fue mayor en la muestra P2 y fue menor en P1, sin diferencias significativas. La mayor preferencia sensorial fue para P3 y P2.
Conclusión: La muestra de pan elaborada con cáscara de manzana al 10% resultó la mejor alternativa, con menor aporte calórico, mayor aporte de fibra dietética produjo mayor cociente de saciedad y mayor preferencia sensorial.
Citas
(1) FAO. 2011. Global food losses and food waste-extent, causes and prevention. En Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R, Meybeck A. Rome. 2011.
(2) FAO. 2021. Plataforma técnica sobre la medición y la reducción de las pérdidas y el desperdicio de alimentos. http://www.fao.org/platform-food-loss-waste/es/.
(3) FAO. 2019. El estado mundial de la agricultura y la alimentación. http://www.fao.org/state-of-food-agriculture/2019/es/
(4) Spiker ML, Hiza HAB, Siddiqi SM, Neff RA. Wasted food, wasted nutrients: Nutrient loss from wasted food in the United States and comparison to gaps in dietary intake. J. Acad. Nutr. Diet. 2017; 117, 1031–1040. http://dx.doi.org/10.1016/j.jand.2017.03.015
(5) González CG. Frutas y verduras perdidas y desperdiciadas, una oportunidad para mejorar el consumo. Rev. Chil. Nutr. 2018; 45(3). http://dx.doi.org/10.4067/s0717-75182018000400198
(6) Augustin MA, Sanguansri L, Fox EM, Cobiac L, Cole MB. Recovery of wasted fruit and vegetables for improving sustainable diets. Trends Food Sci. Technol. 2020; 95: 75-85. https://doi.org/10.1016/j.tifs.2019.11.010
(7) Khattak KF, Rahman TU. Analysis of vegetable's peels as a natural source of vitamins and minerals. Int Food Res Journal. 2017; 24: 292–297.
(8) El Barnossi A, Moussaid F, Iraqi Housseini A. Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. Biotechnol Rep. 2021; 29: e00574. https://doi.org/10.1016/j.btre.2020.e00574
(9) Singh B, Pal Singh J, Karur A, Yadav M. Insights into the chemical composition and bioactivities of citrus peel essential oils. Food Res Int. 2021; 143:110231. https://doi.org/10.1016/j.foodres.2021.110231
(10) Sanz V, López-Hortas L, Torres MD, Domínguez H. Trends in kiwifruit and byproducts valorization Trends Food Sci. Technol. 2021; 107:401-414. https://doi.org/10.1016/j.tifs.2020.11.010
(11) Brahmi I, Mokhtari O, Legssyer B, Hamdani I, Asehraou A, Hasnaoui I, Rokni Y, Diass K, Oualdi I, Tahani A. Chemical and biological characterization of essential oils extracted from citrus fruits peles. Mater. Today: Proc. 2021; 45: 7794–7799. https://doi.org/10.1016/j.matpr.2021.03.587
(12) Domínguez-Rodríguez G, Plaza M, Marina ML. High-performance thin-layer chromatography and direct analysis in real time-high resolution mass spectrometry of non-extractable polyphenols from tropical fruit peels. Food Res Int. 2021; 147: 110455. https://doi.org/10.1016/j.foodres.2021.110455
(13) Liang J, Ren Y, Wang Y, Han M, Yue T, Wang Z, Gao Z. Physicochemical, nutritional, and bioactive properties of pulp and peel from 15 kiwifruit cultivars. Food Biosci. 2021; 42: 101157. https://doi.org/10.1016/j.fbio.2021.101157
(14) Krawitzky M, Arias E, Peiro JM, Negueruela, Val J, Oria R. Determination of Color, Antioxidant Activity, and Phenolic Profile of Different Fruit Tissue of Spanish ‘Verde Doncella’ Apple Cultivar. Int. J. Food Prop. 2014; 17:2298-2311. https://doi.org/10.1080/10942912.2013.792829
(15) Can-Cauich CA, Sauri-Duch E, Betancur-Ancona D, Chel-Guerrero L, González-Aguilar GA, Cuevas-Glory L, Pérez-Pacheco E, Moo-Huchin VM. Tropical fruit peel powders as functional ingredients: Evaluation of their bioactive compounds and antioxidant activity. J Func Foods. 2017; 37: 501–506. http://dx.doi.org/10.1016/j.jff.2017.08.028
(16) Kabir F, Wei Tow W, Hamauzu Y, Katayama S, Tanaka S, Nakamura S. Antioxidant and cytoprotective activities of extracts prepared from fruit and vegetable wastes and by-products. Food Chem. 2015; 167: 358–362. http://dx.doi.org/10.1016/j.foodchem.2014.06.099
(17) Vieira FGK, Borges GDSC, Copetti C, Pietro PFD, Nunes EDC, Fett R. Phenolic compounds and antioxidant activity of the apple flesh and peel of eleven cultivars grown in Brazil. Sci. Hortic. 2011; 128:261–266. https://doi.org/10.1016/j.scienta.2011.01.032
(18) Pérez-Jiménez J, Saura-Calixto F. Fruit peels as sources of non-extractable polyphenols or macromolecular antioxidants: Analysis and nutritional implications. Food Res Int. 2018; 111: 148–152. https://doi.org/10.1016/j.foodres.2018.05.023
(19) Marçal S, Pintado M. Mango peels as food ingredient / additive: nutritional value, processing, safety and applications. Trends Food Sci Tech. 2021;114: 472-489. https://doi.org/10.1016/j.tifs.2021.06.012
(20) Storck CR, Nunes GL, Oliveira BB, Basso C. Folhas, talos, cascas e sementes de vegetais: composicao nutricional, aproveitamento na alimentacao e analise sensorial de preparacoes. Cienc Rural. 2013; 43 (3): 537–543. https://doi.org/10.1590/S0103-84782013000300027
(21) Lopes JM, Garcez R, Silva L, Silva R, Domingues A, Silva A, Dam R. Committed effective dose due to consumption of fruits and vegetables peels: Analysis on cancer risk increase. Radiat Phys Chem. 2020; 167: 108243. https://doi.org/10.1016/j.radphyschem.2019.03.047
(22) Viva de Toledo NM, Nunes LP, da Silva P, Spoto M, Canniatti-Brazaca S. Influence of pineapple, apple and melon by-products on cookies: physicochemical and sensory aspects. Int. J. Food Sci. 2017; 52(5): 1185-1192. https://doi.org/10.1111/ijfs.13383
(23) Amini Khoozani A, Kebede B, Ahmed Bekhit AE. Rheological, textural and structural changes in dough and bread partially substituted with whole green banana flour. LWT-Food Sci Technol. 2020; 126: 109252. DOI:10.1016/j.lwt.2020.109252
(24) Bellur Nagarajaiah S, Prakash J. Nutritional composition, acceptability, and shelf stability of carrot pomace-incorporated cookies with special reference to total and β-carotene retention. Food Sci Tech. 2015; 1: 1039886. http://dx.doi.org/10.1080/23311932.2015.1039886
(25) Bouazizi S, Montevecchi G, Antonelli A, Hamdi M. Effects of prickly pear (Opuntia ficus-indica L.) peel flour as an innovative ingredient in biscuits formulation. LWT-Food Sci Technol. 2020; 124: 109155. https://doi.org/10.1016/j.lwt.2020.109155
(26) Chen Y, Zhao L, He T, Ou Z, Hu Z, Wang K. Effects of mango peel powder on starch digestion and quality characteristics of bread. Int. J. Biol. Macromol. 2019; 140: 647-652. DOI: 10.1016/j.ijbiomac.2019.08.188
(27) Hosseini Ghaboos SH, Seyedain Ardabili SM, Kashaninejad M. Physico-chemical, textural and sensory evaluation of sponge cake supplemented with pumpkin flour. Int Food Res Journal. 2018; 25(2): 854-860.
(28) Cardoso R, Fernandes A, Gonzaléz-Paramás AM, Barros L, Ferreira I. Flour fortification for nutritional and health improvement: A review. Food Res Int. 2019; 125: 108576. doi: 10.1016/j.foodres.2019.108576.
(29) Hall AC, Fairclough AC, Mahadevan K. Paxman JR. Seaweed (Ascophyllum nodosum) enriched bread is acceptable to consumers. Proc. Nutr. Soc. 2010; 69: E352. doi:10.1017/S0029665110002132.
(30) Kim M, Song E, Kim K, Lee C, Jung J, Kwak J, Choi M, Kim D, Sunwoo C, Choi J, Choi H, Ahn D. Effect of Sargassum fulvellum extracts on shelf-life and quality improvement of bread. J. Korean Soc. Food Sci. Nutr. 2011; 40(6): 867-874. DOI: 10.3746/jkfn.2011.40.6.867
(31) Lee C, Choi J, Song E, Lee S, Kim K, Kim S, Yoon S, Lee S, Park N, Jung J, Kwak J, Kim T, Park N, Ahn D. Effect of Myagropsis myagroides extracts on shelf-life and quality of bread. Korean J. Food Sci. Technol. 2010; 42(1): 50-55.
(32) Mamat H, Matanjun P, Ibrahim S, Amin S, Abdull Hamid M, Rameli A. The effect of seaweed composite flour on the textural properties of dough and bread. J. Appl. Phycol. 2014; 26(2): 1057-1062. DOI:10.1007/s10811-013-0082-8.
(33) Komatsuzaki N, Arai S, Fujihara S, Shima J, Wijesekara RS, de Croos MD. Development of Novel Bread by Combining Seaweed Kappaphycus alvarezii from Sri Lanka and Saccharomyces cerevisiae Isolated from Nectarine. J. Agr. Sci. Tech. 2019; 9: 339-346. doi: 10.17265/2161-6264/2019.05.005
(34) Burger AC, Barros K, Alves dos Santos P, Caixeta L, Damiani C. Pumpkin peel flour (Curcubita maxima L.) – Characterization and Technological Applicability. J Food Nutr Res. 2016; 4(5): 327 – 333. DOI:10.12691/jfnr-4-5-9
(35) Saura-Calixto F. Antioxidant Dietary Fiber Product: A New Concept and a Potential Food Ingredient. J. Agric. Food Chem. 1998; 46: 4303-4306. https://doi.org/10.1021/jf9803841
(36) Kumar K, Nath Y, Kumar V, Vyas P, Singh D. Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour. Bioprocess. 2017; 4:18. DOI 10.1186/s40643-017-0148-6
(37) Xu J, Li Y, Zhao Y, Wang D, Wang W. Influence of antioxidant dietary fiber on dough properties and bread qualities: A review. J Funct Foods. 2021; 80: 104434. https://doi.org/10.1016/j.jff.2021.104434
(38) Massini L, Rico D, Martín Diana AB, Barry-Ryan C. Valorisation of Apple Peels. Eur. Food Res. Technol. 2013; (1): 1-15. https://www.researchgate.net/publication/235699610
(39) Quitral V, Sepúlveda M, Schwartz M, Kern W. Antioxidant capacity and total polyphenol content in different apple varieties cultivated in Chile. RECyT. 2014; 16(22): 67-72.
(40) A.O.A.C. Official Methods of Analysis of Association of Offcial Analytical Chemists International. 2010. 18th edition. Dr. William Horwitz, and Dr. George Latimer, Jr. Editors.
(41) Southgate D, Durnin J. Calorie conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets. Br. J. Nutr. 1970; 24: 517-535. doi: 10.1079/bjn19700050.
(42) Análisis sensorial. Metodología. Ordenación. UNE-ISO 8587:2010/Amd 1:2017.
(43) Drapeau V, King N, Hetherington M, Doucet E, Blundell J, Tremblay A. Appetite sensations and satiety quotient: Predictors of energy intake and weight loss. Appetite. 2007; 48(2):159-166. doi:10.1016/j.appet.2006.08.002
(44) Drapeau V, Blundell J, Gallant AR, Arguin H, Després JP, Lamarche B, et al. Behavioural and metabolic characterisation of the low satiety phenotype. Appetite. 2013; 70:67-72. doi: 10.1016/j.appet.2013.05.022.
(45) Coe S, Ryan L. White bread enriched with polyphenol extracts shows no effect on glycemic response or satiety, yet may increase postprandial insulin economy in healthy participants. Nutr Res. 2016; 36: 193-200. http://dx.doi.org/10.1016/j.nutres.2015.10.007
(46) Kotoki D, Deka SC. Baking loss of bread with special emphasis on increasing wáter holding capacity. J Food Sci Technol. 2010; 47(1):128–131.
(47) Miller RA, Maningat CC, Hoseney RC. Modified Wheat Starches Increase Bread Yield. Cereal Chem. 2008; 85(6):713–715. DOI: 10.1094/CCHEM-85-6-0713
(48) Guo L, Xu D, Fang F, Jin Z, Xu X. Effect of glutathione on wheat dough properties and bread quality. J Cereal Sci. 2020; 96: 103116. https://doi.org/10.1016/j.jcs.2020.103116
(49) INTA-Universidad de Chile. Tabla de Composición de Alimentos. 2018.
(50) Base de Datos Española de Composición de Alimentos. https://www.bedca.net/bdpub/index.php
(51) USDA. National Agricultural Library. Database Food Composition. https://www.nal.usda.gov/fnic/food-composition
(52) Chantaro P, Devahastin S, Chiewchan N. Production of antioxidant high dietary fiber powder from carrot peles. LWT - Food Sci Technol. 2008; 41: 1987-1994. doi: 10.1016/j.lwt.2007.11.013
(53) Clementz A, Torresi P, Molli J, Cardell D, Mammarella E. Novel method for valorization of by-products from carrot discards. LWT - Food Sci Technol. 2019; 100: 374–380. https://doi.org/10.1016/j.lwt.2018.10.085
(54) Sathiya Mala K, Kurian AE. Nutritional composition and antioxidant activity of pumpkin wastes. Int J Pharm Chem Biol Sci. 2016; 6(3): 336-344.
(55) Ramadan Hamed AA, Elghali Mustafa S. Extraction and assessment of pectin from pumpkin peles. Biofarmasi J Nat Prod Biochem. 2018; 16(1): 1-7. DOI: 10.13057/biofar/f160101
(56) Phillips GO. Dietary fibre: a chemical category or health ingredient? Bioact. Carbohydr. Diet. Fibre. 2013; 3-9. http://dx.doi.org/10.1016/j.bcdf.2012.12.001
(57) Baboota RK, Bishnoi M, Ambalam P, Kondepudi KK, Sarma S, Boparai RK, Podili K. Functional food ingredients for the management of obesity and associated co-morbidities – A review. J Funct Foods. 2013; 5: 997-1012. http://dx.doi.org/10.1016/j.jff.2013.04.014
(58) Touyarou P, Sulmont-Rossé C, Gagnaire A, Issanchou S, Brondel L. Monotonous consumption of fibre-enriched bread at breakfast increases satiety and influences subsequent food intake. Appetite. 2012; 58: 575–581. doi:10.1016/j.appet.2011.11.026
(59) Jun H-I, Lee C-H, Song G-S, Kim Y-S. Characterization of the pectic polysaccharides from pumpkin peel. LWT- Food Sci Technol. 2006; 39: 554–561. https://doi.org/10.1016/j.lwt.2005.03.004
(60) Güzel M, Akpinar Ö. Valorisation of fruit by-products: Production characterization of pectins from fruit peels. Food Bioprod. Process. 2019; 115: 126–133. https://doi.org/10.1016/j.fbp.2019.03.009
(61) Ramadan Hamed AA, Eltyeb Elkhedir EA, Elghali Mustafa S. Effect of Soxhlet Method Extraction on Characterization of Pectin of Pumpkin Peels. J Exp Food Chem. 2017; 3 (1): 1000122. DOI: 10.4172/2472-0542.1000122
(62) Belghith Fendri L, Chaari F, Maaloul M, Kallel F, Abdelkafi L, Chaabouni SE, Ghribi-Aydi D. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT - Food Sci Technol. 2016; 73: 584-591. http://dx.doi.org/10.1016/j.lwt.2016.06.070
(63) Macagnan FT, dos Santoa LR, Roberto BS, Moura FA, Bizzani M, Silva L. Biological properties of apple pomace,orange bagasse and passion fruit peel as alternative sources of dietary fibre. Bioact. Carbohydr. Diet. Fibre. 2015; 6: 1–6. https://doi.org/10.1016/j.bcdf.2015.04.001
(64) See EF, Wan Nadiah WA, Noor A1ziah AA. Physico-Chemical and Sensory Evaluation of Breads Supplemented with Pumpkin Flour. Asean Food J. 2007; 14(2): 123-130.
(65) Castro M, Tatuszka P, Cox D, Bowen J, Sanguansri L, Augustin MA, Stonehouse W. Effects on plasma carotenoids and consumer acceptance of a functional carrot-based product to supplement vegetable intake: A randomized clinical trial. J Funct Foods. 2019; 60: 103421. DOI:10.1016/j.jff.2019.103421
(66) Slavin JL. Dietary fiber and body weight. Nutrition. 2005; 21: 411-418. doi:10.1016/j.nut.2004.08.018
(67) Ye Z, Arumugam V, Haugabrooks E, Williamson P, Hendrich S. Soluble dietary fiber (Fibersol-2) decreased hunger and increased satiety hormones in humans when ingested with a meal. Nutr Res. 2015; 35: 393-400. http://dx.doi.org/10.1016/j.nutres.2015.03.004
(68) Korczak R, Lindeman K, Thomas W, Slavin JL. Bran fibers and satiety in women who do not exhibit restrained eating. Appetite. 2014; 80: 257–263. http://dx.doi.org/10.1016/j.appet.2014.05.025
(69) Bellissimo N, Akhavan T. Effect of Macronutrient Composition on Short-Term Food Intake and Weight Loss. Adv. Nutr. 2015; 6: 302S–308S. doi:10.3945/an.114.006957.
(70) Pino JL, Rojas M, Orellana B, Torres J. Fortificación con fibra dietética como estrategia para aumentar la saciedad: ensayo aleatorizado doble ciego controlado. Rev Esp Nutr Hum Diet. 2020; 24(4): 336-44. doi: 10.14306/renhyd.24.4.1020
(71) Martini D, Brusamolino A, Del Bo' C, Laureati M, Porrini M, Riso P. Effect of fiber and protein-enriched pasta formulations on satiety-related sensations and afternoon snacking in Italian healthy female subjects. Physiol. Behav. 2018; 185: 61–69. https://doi.org/10.1016/j.physbeh.2017.12.024
(72) Badjona A, Adubofuor J, Amoah I, Diako C. Valorisation of carrot and pineapple pomaces for rock buns development. Sci. Afr. 2019; 6: e00160. https://doi.org/10.1016/j.sciaf.2019.e00160
(73) Tańska M, Roszkowska B, Czaplicki S, Borowska EJ, Bojarska J, Dąbrowska A. Effect of Fruit Pomace Addition on Shortbread Cookies to Improve Their Physical and Nutritional Values. Plant Foods Hum Nutr. 2016; 71:307–313. DOI 10.1007/s11130-016-0561-6
(74) Hayta M, Özuğur G, Etgü H, Tuğkan Şeke I. Effect of Grape (Vitis Vinifera L.) Pomace on the Quality, Total Phenolic Content and Anti-Radical Activity of Bread. J. Food Process. Preserv. 2014; 38(3): 980-986. doi: 10.1111/jfpp.12054
(75) Ou J, Wang M, Zheng J, Ou S. Positive and negative effects of polyphenol incorporation in baked foods. Food Chem. 2019; 284: 90–99. https://doi.org/10.1016/j.foodchem.2019.01.096
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Vilma Quitral, Marcela Sepúlveda, Dominique Figueroa, Viviana Saa, Marcos Flores
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.