Caracterización de tres variedades de aceite de semillas de rambután de Malasia
DOI:
https://doi.org/10.14306/renhyd.23.3.756Palabras clave:
Rambután, Nephelium lappaceum, química.Resumen
Introducción: la semilla de rambután se considera un subproducto residual del procesamiento del fruto. Los residuos de semillas generalmente se desechan o se eliminan en grandes cantidades sin un valor económico que se ha convertido en un problema que debe resolverse. Sin embargo, la semilla contiene una cantidad considerable de grasa cruda. Objetivo: el propósito de este estudio fue caracterizar las propiedades fisicoquímicas del aceite de las semillas de tres variedades de rambután de Malasia (R4, R7 y Serjan) para su posible aplicación.
Material y métodos: En este estudio, el contenido de aceite de semilla de rambután de tres variedades se utilizó para caracterizar las propiedades fisicoquímicas del aceite de semilla de rambután en color, índice de refracción, viscosidad, contenido de ácidos grasos libres, índice de peróxido, índice de p-anisidina, índice de yodo, valor de saponificación, materia insaponificable, composición de ácidos grasos, comportamiento térmico, punto de fusión y grasa sólida.
Resultados: No se observaron diferencias significativas (p> 0.05) para el contenido de ácidos grasos libres, el valor de peróxido, el valor de p-anisidina, el valor de saponificación, la materia insaponificable, el color, la viscosidad y el índice de refracción entre tres variedades. Existen diferencias significativas (p <0.05) en el valor de yodo y el punto de fusión entre el aceite de semilla de rambután de tres variedades. Las variedades R7 y R4 tuvieron el contenido de grasa cruda más alto (37.62 ± 0.10%) y más bajo (34.25 ± 0.07%), respectivamente. El ácido oleico (37.75-40.58%) y el ácido araquídico (35.24-36.89%) fueron los principales ácidos grasos en el aceite. Las curvas de fusión y cristalización mostraron que el aceite exhibía tres picos distintos. Las temperaturas de inicio de fusión y cristalización completas del aceite fueron 24.76–26.57 ° C y 21.19–22.79 °C, respectivamente.
Conclusiones: Este estudio revela que el aceite de semilla de rambután tiene potencial para ser utilizado en varios sectores de la industria alimentaria. Por lo tanto, la semilla de rambután se puede utilizar por completo y, en consecuencia, se puede minimizar la cantidad de desechos.
Citas
(1) Sorkheh K, Kiani S, Sofo A. Wild almond (Prunus scoparia L.) as potential oilseed resource for the future: Studies on the variability of its oil content and composition. Food chemistry. 2016;212:58-64.
(2) Raihana AN, Marikkar J, Amin I, Shuhaimi M. A review on food values of selected tropical fruits’ seeds. International Journal of Food Properties. 2015;18(11):2380-92.
(3) Mehdizadeh S, Lasekan O, Muhammad K, Baharin B. Variability in the fermentation index, polyphenols and amino acids of seeds of rambutan (Nephelium lappaceum L.) during fermentation. Journal of Food Composition and Analysis. 2015;37:128-35.
(4) Mahmood K, Kamilah H, Alias AK, Ariffin F. Nutritional and therapeutic potentials of rambutan fruit (Nephelium lappaceum L.) and the by-products: a review. Journal of Food Measurement and Characterization. 2018:1-16.
(5) Mahisanunt B, Jom KN, Matsukawa S, Klinkesorn U. Solvent fractionation of rambutan (Nephelium lappaceum L.) kernel fat for production of non-hydrogenated solid fat: Influence of time and solvent type. Journal of King Saud University-Science. 2017;29(1):32-46.
(6) Manaf YNA, Marikkar JMN, Long K, Ghazali HM. Physico-chemical characterisation of the fat from red-skin rambutan (Nephellium lappaceum L.) seed. Journal of oleo science. 2013;62(6):335-43.
(7) Chai KF, Mohd Adzahan N, Karim R, Rukayadi Y, Ghazali HM. Characteristics of fat, and saponin and tannin contents of 11 varieties of rambutan (Nephelium lappaceum L.) seed. International Journal of Food Properties. 2018;21(1):1091-106.
(8) Sirisompong W, Jirapakkul W, Klinkesorn U. Response surface optimization and characteristics of rambutan (Nephelium lappaceum L.) kernel fat by hexane extraction. LWT-Food Science and Technology. 2011;44(9):1946-51.
(9) Chai KF, Adzahan NM, Karim R, Rukayadi Y, Ghazali HM. Fat properties and antinutrient content of rambutan (Nephelium lappaceum L.) seed during solid-state fermentation of rambutan fruit. Food chemistry. 2019;274:808-15.
(10) Solís-Fuentes JA, Camey-Ortíz G, Hernández-Medel MdR, Pérez-Mendoza F, Durán-de-Bazúa C. Composition, phase behavior and thermal stability of natural edible fat from rambutan (Nephelium lappaceum L.) seed 2010.
(11) Harahap SN, Ramli N, Vafaei N, Said M. Physicochemical and nutritional composition of rambutan anak sekolah (Nephelium lappaceum L.) seed and seed oil. Pakistan Journal of Nutrition. 2012;11(11):1073-7.
(12) Sonwai S, Ponprachanuvut P. Characterization of physicochemical and thermal properties and crystallization behavior of krabok (Irvingia Malayana) and rambutan seed fats. Journal of oleo science. 2012;61(12):671-9.
(13) AOAC. Official methods of analysis of the Association of Official Analytical Chemists , 14th ed. Washington, DC,1984.
(14) Society AOC, Firestone D. Official methods and recommended practices of the American Oil Chemists' Society: AOCS press; 1994.
(15) AOCS. Official methods and recommended practices of the American Oil Chemists' Society, 6th ed. Champaign, USA: American Oil Chemists’ Society; 2009.
(16) Methods PT. Methods of Test for Palm Oil and Palm Oil Products. 1988.
(17) PORIM. PORIM test methods. Palm Oil Research Institute of Malaysia. Kuala Lumpur, Malaysia1995.
(18) Cocks LV, Rede Cv. Laboratory handbook for oil and fat analysts. Laboratory handbook for oil and fat analysts. 1966.
(19) Abdulkarim S, Long K, Lai O, Muhammad S, Ghazali H. Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. Food Chemistry. 2005;93(2):253-63.
(20) Nassu RT, Gonçalves LAG. Determination of melting point of vegetable oils and fats by differential scanning calorimetry (DSC) technique. Grasas y Aceites. 1999;50(1):16-21.
(21) Lee S, Radu S, Ariffin A, Ghazali H. Physico-chemical characterization of oils extracted from noni, spinach, lady’s finger, bitter gourd and mustard seeds, and copra. International Journal of Food Properties. 2015;18(11):2508-27.
(22) Augustin M, Chua B. Composition of rambutan seeds. Pertanika. 1988;11(2):211-5.
(23) Lourith N, Kanlayavattanakul M, Mongkonpaibool K, Butsaratrakool T, Chinmuang T. Rambutan seed as a new promising unconventional source of specialty fat for cosmetics. Industrial Crops and Products. 2016;83:149-54.
(24) Nehdi IA, Sbihi H, Tan CP, Zarrouk H, Khalil MI, Al-Resayes SI. Characteristics, composition and thermal stability of Acacia senegal (L.) Willd. seed oil. Industrial Crops and Products. 2012;36(1):54-8.
(25) Igwe IO. The effects of temperature on the viscosity of vegetable oils in solution. Industrial crops and products. 2004;19(2):185-90.
(26) Azian MN, Kamal AM, Panau F, Ten W. Viscosity estimation of triacylglycerols and of some vegetable oils, based on their triacylglycerol composition. Journal of the American Oil Chemists' Society. 2001;78(10):1001-5.
(27) Santos J, Santos I, Souza A. Effect of heating and cooling on rheological parameters of edible vegetable oils. Journal of food Engineering. 2005;67(4):401-5.
(28) Kheiri M, Som MNM. Physico-Chemical Characteristics of Rambutan Kernel Fat. Serdang: MARDI Publication, 1987.
(29) Romain V, Ngakegni-Limbili AC, Mouloungui Zp, Ouamba J-M. Thermal properties of monoglycerides from Nephelium lappaceum L. Oil, as a natural source of saturated and monounsaturated fatty acids. Industrial & Engineering Chemistry Research. 2013;52(39):14089-98.
(30) Nyam K, Tan C, Lai O, Long K, Man YC. Physicochemical properties and bioactive compounds of selected seed oils. LWT-Food Science and technology. 2009;42(8):1396-403.
(31) Commission CA. Recommended internal standards edible fats and oils. Edn FAO/WHO, Rome. 1982;1(11):1-179.
(32) Subramanian R, Nandini K, Sheila P, Gopalakrishna A, Raghavarao K, Nakajima M, et al. Membrane processing of used frying oils. Journal of the American Oil Chemists' Society. 2000;77(3):323.
(33) Terés S, Barceló-Coblijn G, Benet M, Alvarez R, Bressani R, Halver J, et al. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proceedings of the National Academy of Sciences. 2008.
(34) Sonwai S, Rungprasertphol P, Nantipipat N, Tungvongcharoan S, Laiyangkoon N. Characterization of Coconut Oil Fractions Obtained from Solvent Fractionation Using Acetone. Journal of oleo science. 2017;66(9):951-61.