Biodisponibilidad de compuestos fenólicos dietéticos: Revisión
DOI:
https://doi.org/10.14306/renhyd.20.2.184Palabras clave:
Fenoles, Biotransformación, Metabolismo.Resumen
Los compuestos fenólicos son ubicuos en alimentos de origen vegetal. La alta ingesta de frutas, vegetales y cereales está relacionada con un bajo índice en padecimientos crónicos. Se cree que los compuestos fenólicos son, en parte, responsables de este efecto benéfico. Sin embargo, la bioaccesibilidad y biotransformación de los compuestos fenólicos generalmente no es considerada en este tipo de estudios. Por lo tanto, no se ha podido obtener un mecanismo de acción de los compuestos fenólicos. En este trabajo, presentamos una revisión de literatura de los procesos metabólicos a través de los cuales los compuestos fenólicos son sometidos después
de ser ingeridos.
Citas
(1) Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005; 81(1 Suppl): 230S-242S.
(2) Vermerris W, Nicholson R. Families of Phenolic Compounds and Means of Classification. En: Vermerris W, Nicholson R, editores. Phenolic Compound Biochemistry. Springer Netherlands; 2006. p. 1-34.
(3) Ozcan T, Akpinar-Bayizit A, Yilmaz-Ersan L, Delikanli B. Phenolics in Human Health. Int J Chem Eng Appl. 2014; 5(5): 393-6.
(4) Porrini M, Riso P. Factors influencing the bioavailability of antioxidants in foods: a critical appraisal. Nutr Metab Cardiovasc Dis. 2008; 18(10): 647-50.
(5) Chen ML, Shah V, Patnaik R, Adams W, Hussain A, Conner D, et al. Bioavailability and bioequivalence: an FDA regulatory overview. Pharm Res. 2001; 18(12): 1645-50.
(6) Palafox-Carlos H, Ayala-Zavala JF, González-Aguilar GA. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J Food Sci. 2011; 76(1): R6-15.
(7) Tagliazucchi D, Verzelloni E, Bertolini D, Conte A. In vitro bioaccessibility and antioxidant activity of grape polyphenols. Food Chem. 2010; 120(2): 599-606.
(8) Stahl W, van den Berg H, Arthur J, Bast A, Dainty J, Faulks RM, et al. Bioavailability and metabolism. Mol Aspects Med. 2002; 23(1-3): 39-100.
(9) Di Carlo G, Mascolo N, Izzo AA, Capasso F. Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci. 1999; 65(4): 337-53.
(10) Markham KR. Techniques of flavonoid identification. London; New York: Academic Press; 1982.
(11) Karakaya S. Bioavailability of phenolic compounds. Crit Rev Food Sci Nutr. 2004; 44(6): 453-64.
(12) Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004; 79(5): 727-47.
(13) Hollman PC, Katan MB. Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother. 1997; 51(8): 305-10.
(14) McGhie TK, Walton MC. The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res. 2007; 51(6): 702-13.
(15) Passamonti S, Vrhovsek U, Mattivi F. The interaction of anthocyanins with bilitranslocase. Biochem Biophys Res Commun. 2002; 296(3): 631-6.
(16) Adom KK, Sorrells ME, Liu RH. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J Agric Food Chem. 2005; 53(6): 2297-306.
(17) Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev. 2010; 23(1): 65-134.
(18) Pekkinen J, Rosa NN, Savolainen O-I, Keski-Rahkonen P, Mykkänen H, Poutanen K, et al. Disintegration of wheat aleurone structure has an impact on the bioavailability of phenolic compounds and other phytochemicals as evidenced by altered urinary metabolite profile of diet-induced obese mice. Nutr Metab. 2014; 11(1): 1.
(19) Hanlin RL, Hrmova M, Harbertson JF, Downey MO. Review: Condensed tannin and grape cell wall interactions and their impact on tannin extractability into wine. Aust J Grape Wine Res. 2010; 16(1): 173-88.
(20) Zhou K, Laux JJ, Yu L. Comparison of Swiss red wheat grain and fractions for their antioxidant properties. J Agric Food Chem. 2004; 52(5): 1118-23.
(21) Aura A-M, Martin-Lopez P, O’Leary KA, Williamson G, Oksman-Caldentey K-M, Poutanen K, et al. In vitro metabolism of anthocyanins by human gut microflora. Eur J Nutr. 2005; 44(3): 133-42.
(22) Stalmach A, Edwards CA, Wightman JD, Crozier A. Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice. Food Funct. 2013; 4(1): 52-62.
(23) Alminger M, Aura A-M, Bohn T, Dufour C, El SN, Gomes A, et al. In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr Rev Food Sci F. 2014; 13(4): 413-36.
(24) Padayachee A, Netzel G, Netzel M, Day L, Zabaras D, Mikkelsen D, et al. Binding of polyphenols to plant cell wall analogues - Part 2: Phenolic acids. Food Chem. 2012; 135(4): 2287-92.
(25) Padayachee A, Netzel G, Netzel M, Day L, Zabaras D, Mikkelsen D, et al. Binding of polyphenols to plant cell wall analogues – Part 1: Anthocyanins. Food Chem. 2012; 134(1): 155-61.
(26) Dupas C, Marsset Baglieri A, Ordonaud C, Tomé D, Maillard M-N. Chlorogenic acid is poorly absorbed, independently of the food matrix: A Caco-2 cells and rat chronic absorption study. Mol Nutr Food Res. 2006; 50(11): 1053-60.
(27) Parkinson A, Ogilvie BW. Biotransformation of Xenobiotics. En: Klaassen CD, Watkins JB, editores. Casarett & Doull’s Essentials of Toxicology. 2a ed. New York: McGraw-Hill Medical; 2010. p. 71-98.
(28) Williams JA, Hurst SI, Bauman J, Jones BC, Hyland R, Gibbs JP, et al. Reaction phenotyping in drug discovery: moving forward with confidence? Curr Drug Metab. 2003; 4(6): 527-34.
(29) Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000; 130(8S Suppl): 2073S-85S.
(30) Kroon PA, Clifford MN, Crozier A, Day AJ, Donovan JL, Manach C, et al. How should we assess the effects of exposure to dietary polyphenols in vitro? Am J Clin Nutr. 2004; 80(1): 15-21.
(31) Shahidi F, Naczk M. Nutritional and pharmacological effects of food phenolics. En: Food phenolics: sources, chemistry, effects, applications. 1a ed. Lancaster, PA: Technomic Pub. Co.; 1995. p. 171-91.
(32) Velderrain-Rodríguez GR, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala JF, Chen C-YO, Robles-Sánchez M, et al. Phenolic compounds: their journey after intake. Food Funct. 2014; 5(2): 189-97.
(33) Vacek J, Ulrichová J, Klejdus B, Šimánek V. Analytical methods and strategies in the study of plant polyphenolics in clinical samples. Anal Methods. 2010; 2(6): 604-13.
(34) Crozier A, Del Rio D, Clifford MN. Bioavailability of dietary flavonoids and phenolic compounds. Mol Aspects Med. 2010; 31(6): 446-67.
(35) Poquet L, Clifford MN, Williamson G. Effect of dihydrocaffeic acid on UV irradiation of human keratinocyte HaCaT cells. Arch Biochem Biophys. 2008; 476(2): 196-204.
(36) Kay CD. Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr Res Rev. 2006; 19(1): 137-46.
(37) Lewandowska U, Szewczyk K, Hrabec E, Janecka A, Gorlach S. Overview of metabolism and bioavailability enhancement of polyphenols. J Agric Food Chem. 2013; 61(50): 12183-99.
(38) Basheer L, Kerem Z. Interactions between CYP3A4 and Dietary Polyphenols. Oxid Med Cell Longev. 2015; 2015: 854015.
(39) Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998; 56(11): 317-33.
(40) Misaka S, Kawabe K, Onoue S, Werba JP, Giroli M, Watanabe H, et al. Green tea extract affects the cytochrome P450 3A activity and pharmacokinetics of simvastatin in rats. Drug Metab Pharmacokinet. 2013; 28(6): 514-8.
(41) Burchell B, Leakey J, Dutton GJ. Relationship beteen activation of «detoxicating» enzymes in stored broken-cell preparations and in autolysing liver. Enzyme. 1975; 20(3): 156-64.
(42) Hawes EM. N+-glucuronidation, a common pathway in human metabolism of drugs with a tertiary amine group. Drug Metab Dispos. 1998; 26(9): 830-7.
(43) Del Rio D, Costa LG, Lean MEJ, Crozier A. Polyphenols and health: what compounds are involved? Nutr Metab Cardiovasc Dis. 2010; 20(1): 1-6.
(44) Steffen Y, Gruber C, Schewe T, Sies H. Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys. 2008; 469(2): 209-19.
(45) Actis-Goretta L, Lévèques A, Rein M, Teml A, Schäfer C, Hofmann U, et al. Intestinal absorption, metabolism, and excretion of (-)-epicatechin in healthy humans assessed by using an intestinal perfusion technique. Am J Clin Nutr. 2013; 98(4): 924-33.
(46) Terao J. Dietary flavonoids as antioxidants in vivo: conjugated metabolites of (-)-epicatechin and quercetin participate in antioxidative defense in blood plasma. J Med Invest. 1999; 46(3-4): 159-68.
(47) Spencer JP, Schroeter H, Rechner AR, Rice-Evans C. Bioavailability of flavan-3-ols and procyanidins: gastrointestinal tract influences and their relevance to bioactive forms in vivo. Antioxid Redox Signal. 2001; 3(6): 1023-39.
(48) Das S, Rosazza JPN. Microbial and enzymatic transformations of flavonoids. J Nat Prod. 2006; 69(3): 499-508.
(49) Bernini R, Crisante F, Ginnasi MC. A convenient and safe O-methylation of flavonoids with dimethyl carbonate (DMC). Molecules. 2011; 16(2): 1418-25.
(50) van Zanden JJ, Wortelboer HM, Bijlsma S, Punt A, Usta M, Bladeren PJ van, et al. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2. Biochem Pharmacol. 2005; 69(4): 699-708.
(51) Walle T. Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. Int J Mol Sci. 2009; 10(11): 5002-19.