Niveles de adiposidad corporal en el fenotipo delgado metabólicamente obeso: Análisis transversal de pobladores peruanos

Niveles de adiposidad corporal en el fenotipo delgado metabólicamente obeso

Autores/as

  • Jamee Guerra Valencia Facultad de Ciencias de la Salud, Universidad Privada del Norte, Lima, Perú
  • Kiomi Yabiku-Soto Escuela de Nutrición y Dietética, Universidad Científica del Sur, Lima, Perú. https://orcid.org/0000-0001-9515-4587
  • Juan Carlos Roque Universidad Privada San Juan Bautista, Lima, Peru
  • Noël C. Barengo Department of Medical Education, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
  • Lorena Saavedra-Garcia Carrera de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad san Ignacio de Loyola, Lima, Perú

DOI:

https://doi.org/10.14306/renhyd.28.1.2035

Palabras clave:

Síndrome Metabólico, Obesidad, Composición corporal, pliegues cutáneos, Curva ROC

Resumen

Introducción: La relación entre la composición corporal y el fenotipo delgado metabólicamente obeso (DMO), caracterizado por problemas metabólicos en personas con un IMC normal, ha sido poco estudiada en población latina. A pesar de que el IMC se utiliza ampliamente para evaluar las asociaciones entre sobrepeso, obesidad y la salud metabólica, presenta limitaciones en la diferenciación entre grasa y masa magra. El objetivo de este estudio fue analizar la asociación entre el porcentaje de grasa corporal (%GC) estimado a través de pliegues cutáneos y el diagnóstico de DMO en la población peruana.

Metodología: Estudio analítico transversal con datos de la cohorte PERU MIGRANT. Se incluyeron participantes con IMC entre 18,5 a 24,9 kg/m² sin antecedentes de diabetes e hipertensión. El DMO se definió como ≥2 factores de riesgo cardio metabólicos. El punto de corte óptimo del %GC se obtuvo mediante la curva de la característica operativa del receptor (COR) y área bajo la curva con intervalos de confianza (IC) al 95%, estratificado por sexo y utilizando el índice de Youden. Se realizó un modelo lineal generalizado con enlace log y familia Poisson con varianza, obteniendo razones de prevalencia crudas y ajustadas (RPc y RPa) con IC95%.

Resultados: Se incluyó 321 participantes en el estudio. El 54,52% eran mujeres y 9,66% tenía ≥60 años. La prevalencia del DMO fue 32,09% y varió significativamente según el sexo, grupo de edad y %GC. Los puntos de corte óptimos del %GC para DMO fueron 20,70% en hombres y 32,45% en mujeres. La regresión múltiple reveló que un alto %GC aumentó significativamente la RPa en 3,09 (IC95% 2,04-4,67) veces, tras ajustar por covariables.

Conclusión: Este estudio confirma la relación entre el %GC estimado mediante pliegues cutáneos y el diagnóstico de DMO. Destaca la importancia de evaluar la composición corporal integralmente, incluso en personas delgadas, para prevenir eficazmente las alteraciones metabólicas asociadas.

Citas

(1) Chong B, Jayabaskaran J, Kong G, Chan YH, Chin YH, Goh R, et al. Trends and predictions of malnutrition and obesity in 204 countries and territories: an analysis of the Global Burden of Disease Study 2019. EClinicalMedicine. 2023;57, doi: 10.1016/J.ECLINM.2023.101850.

(2) Bray GA, Kim KK, Wilding JPH. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev. 2017;18(7):715-23, doi: 10.1111/OBR.12551.

(3) Cornier MA, Després JP, Davis N, Grossniklaus DA, Klein S, Lamarche B, et al. Assessing adiposity: a scientific statement from the American Heart Association. Circulation. 2011;124(18):1996-2019, doi: 10.1161/CIR.0B013E318233BC6A.

(4) Ruderman NB, Schneider SH, Berchtold P. The «metabolically-obese,» normal-weight individual. Am J Clin Nutr. 1981;34(8):1617-21, doi: 10.1093/AJCN/34.8.1617.

(5) Pluta W, Dudzińska W, Lubkowska A. Metabolic Obesity in People with Normal Body Weight (MONW)-Review of Diagnostic Criteria. Int J Environ Res Public Health. 2022;19(2), doi: 10.3390/IJERPH19020624.

(6) Zenas-Trujillo GZ, Trujillo-Ramirez I, Carhuavilca-Torres JM, Ayala-Mendivil RE, Vera-Ponce VJ. Prevalence of Metabolically-Obese Normal-Weight Worldwide: Systematic Review and Meta-Analysis. J Endocrinol Metab. 2023;13(3):104-13, doi: 10.14740/JEM882.

(7) Stefan N. Metabolically Healthy and Unhealthy Normal Weight and Obesity. Endocrinol Metab (Seoul). 2020;35(3):487-93, doi: 10.3803/ENM.2020.301.

(8) Achamrah N, Colange G, Delay J, Rimbert A, Folope V, Petit A, et al. Comparison of body composition assessment by DXA and BIA according to the body mass index: A retrospective study on 3655 measures. PLoS One. 2018;13(7), doi: 10.1371/JOURNAL.PONE.0200465.

(9) González-Ruíz K, Medrano M, Correa-Bautista JE, García-Hermoso A, Prieto-Benavides DH, Tordecilla-Sanders A, et al. Comparison of Bioelectrical Impedance Analysis, Slaughter Skinfold-Thickness Equations, and Dual-Energy X-ray Absorptiometry for Estimating Body Fat Percentage in Colombian Children and Adolescents with Excess of Adiposity. Nutrients. 2018;10(8):1086, doi: 10.3390/NU10081086.

(10) Silveira EA, Barbosa LS, Rodrigues APS, Noll M, De Oliveira C. Body fat percentage assessment by skinfold equation, bioimpedance and densitometry in older adults. Arch Public Health. 2020;78(1), doi: 10.1186/S13690-020-00449-4.

(11) Ruiz-Alejos A, Carrillo-Larco RM, Miranda JJ, Gilman RH, Smeeth L, Bernabé-Ortiz A. Skinfold thickness and the incidence of type 2 diabetes mellitus and hypertension: an analysis of the PERU MIGRANT study. Public Health Nutr. 2019;23(1):63-71, doi: 10.1017/S1368980019001307.

(12) Ramírez-Vélez R, Correa-Bautista JE, Sanders-Tordecilla A, Ojeda-Pardo ML, Cobo-Mejía EA, Castellanos-Vega R del P, et al. Percentage of Body Fat and Fat Mass Index as a Screening Tool for Metabolic Syndrome Prediction in Colombian University Students. Nutrients. 2017;9(9), doi: 10.3390/NU9091009.

(13) Benziger CP, Bernabé-Ortiz A, Gilman RH, Checkley W, Smeeth L, Málaga G, et al. Metabolic Abnormalities Are Common among South American Hispanics Subjects with Normal Weight or Excess Body Weight: The CRONICAS Cohort Study. PLoS One. 2015;10(11), doi: 10.1371/JOURNAL.PONE.0138968.

(14) Miranda JJ, Gilman RH, García HH, Smeeth L. The effect on cardiovascular risk factors of migration from rural to urban areas in Peru: PERU MIGRANT Study. BMC Cardiovasc Disord. 2009;9, doi: 10.1186/1471-2261-9-23.

(15) Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311-21, doi: 10.1016/J.DIABRES.2011.10.029.

(16) Durnin JVGA, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32(1):77-97, doi: 10.1079/BJN19740060.

(17) Siri WE. The gross composition of the body. Adv Biol Med Phys. 1956;4:239-80, doi: 10.1016/B978-1-4832-3110-5.50011-X.

(18) Riley L, Guthold R, Cowan M, Savin S, Bhatti L, Armstrong T, et al. The World Health Organization STEPwise Approach to Noncommunicable Disease Risk-Factor Surveillance: Methods, Challenges, and Opportunities. Am J Public Health. 2016;106(1):74-8, doi: 10.2105/AJPH.2015.302962.

(19) IPAQ - Score. [accedido 5 marzo 2024]. Disponible en: https://sites.google.com/view/ipaq/score.

(20) Preedy VR. Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease. Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease. 2012:1-3107, doi: 10.1007/978-1-4419-1788-1/COVER.

(21) Contreras Rojas MC, Palomino Hamasaki CL. Elaboración y mantenimiento de infantómetros y tallímetros de madera: guía técnica. Instituto Nacional de Salud. 2007.

(22) Ruiz-Alejos A, Carrillo-Larco RM, Miranda JJ, Anderson CAM, Gilman RH, Smeeth L, et al. Addressing the impact of urban exposure on the incidence of type 2 diabetes mellitus: The PERU MIGRANT Study. Sci Rep. 2018;8(1), doi: 10.1038/S41598-018-23812-6.

(23) Lazo-Porras M, Bernabe-Ortiz A, Málaga G, Gilman RH, Acuña-Villaorduña A, Cardenas-Montero D, et al. Low HDL cholesterol as a cardiovascular risk factor in rural, urban, and rural-urban migrants: PERU MIGRANT cohort study. Atherosclerosis. 2016;246:36, doi: 10.1016/J.ATHEROSCLEROSIS.2015.12.039.

(24) Carrillo-Larco RM, Ruiz-Alejos A, Bernabé-Ortiz A, Gilman RH, Smeeth L, Miranda JJ. Cohort Profile: The PERU MIGRANT Study-A prospective cohort study of rural dwellers, urban dwellers and rural-to-urban migrants in Peru. Int J Epidemiol. 2017;46(6), doi: 10.1093/IJE/DYX116.

(25) Popkin BM, Reardon T. Obesity and the food system transformation in Latin America. Obesity Reviews. 2018;19(8):1028-64, doi: 10.1111/OBR.12694.

(26) Heymsfield SB, Peterson CM, Thomas DM, Heo M, Schuna JM. Why are there race/ethnic differences in adult body mass index-adiposity relationships? A quantitative critical review. Obes Rev. 2016;17(3):262-75, doi: 10.1111/OBR.12358.

(27) Lear SA, Kohli S, Bondy GP, Tchernof A, Sniderman AD. Ethnic variation in fat and lean body mass and the association with insulin resistance. J Clin Endocrinol Metab. 2009;94(12):4696-702, doi: 10.1210/JC.2009-1030.

(28) Ruderman A, Pérez LO, Adhikari K, Navarro P, Ramallo V, Gallo C, et al. Obesity, genomic ancestry, and socioeconomic variables in Latin American mestizos. Am J Hum Biol. 2019;31(5), doi: 10.1002/AJHB.23278.

(29) Tayefi M, Tayefi B, Darroudi S, Mohammadi-Bajgiran M, Mouhebati M, Heidari-Bakavoli A, et al. There is an association between body fat percentage and metabolic abnormality in normal weight subjects: Iranian large population. Translational Metabolic Syndrome Research. 2019;2(1):11-6, doi: 10.1016/J.TMSR.2019.08.001.

(30) Shea JL, King MTC, Yi Y, Gulliver W, Sun G. Body fat percentage is associated with cardiometabolic dysregulation in BMI-defined normal weight subjects. Nutr Metab Cardiovasc Dis. 2012;22(9):741-7, doi: 10.1016/J.NUMECD.2010.11.009.

(31) Correa-Rodríguez M, González-Ruíz K, Rincón-Pabón D, Izquierdo M, García-Hermoso A, Agostinis-Sobrinho C, et al. Normal-Weight Obesity Is Associated with Increased Cardiometabolic Risk in Young Adults. Nutrients. 2020;12(4), doi: 10.3390/NU12041106.

(32) Wang Y, Pan L, Wan S, Yihuo W, Yang F, Li Z, et al. Body fat and muscle were associated with metabolically unhealthy phenotypes in normal weight and overweight/obesity in Yi people: A cross-sectional study in Southwest China. Front Public Health. 2022;10:1020457, doi: 10.3389/FPUBH.2022.1020457/BIBTEX.

(33) Gueugneau M, Coudy-Gandilhon C, Théron L, Meunier B, Barboiron C, Combaret L, et al. Skeletal Muscle Lipid Content and Oxidative Activity in Relation to Muscle Fiber Type in Aging and Metabolic Syndrome. The Journals of Gerontology: Series A. 2015;70(5):566-76, doi: 10.1093/GERONA/GLU086.

(34) Hernández-Vásquez A, Olazo-Cardenas KM, Visconti-Lopez FJ, Barrenechea-Pulache A. What Drives Abdominal Obesity in Peru? A Multilevel Analysis Approach Using a Nationally Representative Survey. Int J Environ Res Public Health. 2022;19(16):10333, doi: 10.3390/IJERPH191610333.

(35) Guía técnica para la valoración nutricional antropométrica de la persona adulta - Informes y publicaciones - Ministerio de Salud - Plataforma del Estado Peruano. [accedido 5 marzo 2024]. Disponible en: https://www.gob.pe/institucion/minsa/informes-publicaciones/314114-guia-tecnica-para-la-valoracion-nutricional-antropometrica-de-la-persona-adulta.

(36) Madden AM, Smith S. Body composition and morphological assessment of nutritional status in adults: a review of anthropometric variables. J Hum Nutr Diet. 2016;29(1):7-25, doi: 10.1111/JHN.12278.

Publicado

2024-03-05

Cómo citar

Guerra Valencia, J., Yabiku-Soto, K., Roque, J. C., Barengo, N. C., & Saavedra-Garcia, L. (2024). Niveles de adiposidad corporal en el fenotipo delgado metabólicamente obeso: Análisis transversal de pobladores peruanos : Niveles de adiposidad corporal en el fenotipo delgado metabólicamente obeso. Revista Española De Nutrición Humana Y Dietética, 28(1), 54–63. https://doi.org/10.14306/renhyd.28.1.2035