Validation of a rapid method for detecting nitrate in chard (Beta vulgaris cycla): analysis of Spanish commercial samples marketed in the Region of Huesca, Spain, and estimation of the daily intake

Susana Menal-Puey; Esther Asensio

,University of Zaragoza Higher Polytechnic School Department of Animal Production and Food Science, Huesca , Spain , ,University of Zaragoza Higher Polytechnic School Department of Analytical Chemistry, Huesca , Spain



Abstract

Introduction: This paper presents the validation of a rapid method for the determination of nitrate content in chard samples, in order to determine, during two periods (winter and summer of 2012), the current levels of nitrate in this typical vegetable, and the toxicological risk associated with this intake. Material and Methods: A rapid colorimetric determination of nitrate in chard samples by nitration of salicylic acid was validated. The validated method was applied to analyze the content of nitrate in 56 chard samples marketed in Huesca (Spain) and collected in winter and summer seasons, and the toxicological risk associated with the intake for adult and children population was evaluated. Results: The method was specific and robust enough for the required purposes. The main performance characteristics of the method were: limits of detection and quantitation of 0.29 mg L-1 and 0.59 mg L-1, respectively; recoveries from 80.0% to 107.4%; and coefficients of variation lower than 11.4%. The detected mean nitrate content was 2293 mg kg-1 and there was evidence of risk only for extreme consumers (adults and children), especially in winter period. Conclusions: A high percentage of chard samples with a considerable concentration of nitrate were found. Taking into account the estimated dairy intake of nitrate associated with them, it could be recommended to establish a regulatory limit of nitrate to chard, a vegetable of important consumption in Spain.



Abstract

Introducción: En este trabajo se presenta la validación de un método rápido para la determinación del contenido de nitratos en muestras de acelga, con el fin de determinar durante dos periodos (invierno y verano de 2012) los niveles de nitratos en esta hortaliza típica y el riesgo toxicológico asociado con este consumo. Material y Métodos: Se validó un método para la determinación colorimétrica de nitratos en muestras de acelga basado en la nitración del ácido salicílico. Una vez validado el método, se aplicó para analizar 56 muestras de acelgas del mercado de Huesca (España) recogidas en las temporadas de invierno y verano, y se valoró el riesgo toxicológico asociado al consumo para la población española adulta e infantil. Resultados: El método fue específico y robusto para los fines requeridos. Las principales características del método fueron: límites de detección y cuantificación de 0,29 mg L-1 y 0,59 mg L-1, respectivamente; recuperaciones de 80,0% a 107,4%; y coeficientes de variación inferiores a 11,4%. El contenido medio de nitratos detectado fue de 2293 mg kg-1 y sólo hubo evidencia de riesgo para los consumidores extremos (adultos y niños), especialmente en el invierno. Conclusiones: Se encontró un alto porcentaje de muestras de acelgas con una concentración considerable de nitratos. Teniendo en cuenta la ingesta diaria estimada de nitratos asociada a ellas, se recomendaría establecer un límite reglamentario de nitratos en acelgas ya que es una hortaliza de consumo importante en España.

2174-5145. 2015 Mar 0; 19
doi: 10.14306/renhyd.19.1.110

Copyright

Keywords: Nitrate, Vegetables, Contamination, Dietary intake, Toxicological risk, Nitratos, Vegetales, Contaminación, Ingesta diaria, Riesgo toxicológico.

<p><a name="top"></a><font face="Verdana" size="2"><b>ORIGINAL ARTICLES</b></font></p> <p>&nbsp;</p> <p><font face="Verdana" size="4"><b>Validation of a rapid method for detecting nitrate in chard (<i>Beta vulgaris cycla</i>). Analysis of Spanish commercial samples marketed in the Region of Huesca, Spain, and estimation of the daily intake</b></font></p> <p><font face="Verdana" size="4"><b>Validaci&oacute;n de un m&eacute;todo r&aacute;pido para detectar nitratos en acelgas (<i>Beta vulgaris cycla</i>). An&aacute;lisis de muestras espa&ntilde;olas comercializadas en la regi&oacute;n de Huesca y estimaci&oacute;n de la ingesta diaria</b></font></p> <p>&nbsp;</p> <p>&nbsp;</p> <p><font face="Verdana" size="2"><b>Susana Menal-Puey<sup>a,*</sup> and Esther Asensio<sup>b</sup></b></font></p> <p><font face="Verdana" size="2"><sup>a</sup> Department of Animal Production and Food Science, Higher Polytechnic School, University of Zaragoza, Huesca, Spain. <br><sup>b</sup> Department of Analytical Chemistry, Higher Polytechnic School, University of Zaragoza, Huesca, Spain.</font></p> <p><font face="Verdana" size="2">The authors are gratefully with the collaboration received from Gobierno de Arag&oacute;n. Grupos Consolidados de Investigaci&oacute;n T10 and A01.</font></p>
<p><font face="Verdana" size="2"><a href="#bajo">Correspondence</a></font></p> <p>&nbsp;</p> <p>&nbsp;</p> <hr size="1"> <p><font face="Verdana" size="2"><b>ABSTRACT</b></font></p> <p><font face="Verdana" size="2"><b>Introduction:</b> This paper presents the validation of a rapid method for the determination of nitrate content in chard samples, in order to determine, during two periods (winter and summer of 2012), the current levels of nitrate in this typical vegetable, and the toxicological risk associated with this intake. <br><b>Material and Methods:</b> A rapid colorimetric determination of nitrate in chard samples by nitration of salicylic acid was validated. The validated method was applied to analyze the content of nitrate in 56 chard samples marketed in Huesca (Spain) and collected in winter and summer seasons, and the toxicological risk associated with the intake for adult and children population was evaluated. <br><b>Results:</b> The method was specific and robust enough for the required purposes. The main performance characteristics of the method were: limits of detection and quantitation of 0.29 mg L<sup>-1</sup> and 0.59 mg L<sup>-1</sup>, respectively; recoveries from 80.0% to 107.4%; and coefficients of variation lower than 11.4%. The detected mean nitrate content was 2293 mg kg<sup>-1</sup> and there was evidence of risk only for extreme consumers (adults and children), especially in winter period. <br><b>Conclusions:</b> A high percentage of chard samples with a considerable concentration of nitrate were found. Taking into account the estimated dairy intake of nitrate associated with them, it could be recommended to establish a regulatory limit of nitrate to chard, a vegetable of important consumption in Spain.</font></p> <p><font face="Verdana" size="2"><b>Key words:</b> Nitrate; Vegetables; Contamination; Dietary intake; Toxicological risk.</font></p> <hr size="1"> <p><font face="Verdana" size="2"><b>RESUMEN</b></font></p>
<p><font face="Verdana" size="2"><b>Introducci&oacute;n:</b> En este trabajo se presenta la validaci&oacute;n de un m&eacute;todo r&aacute;pido para la determinaci&oacute;n del contenido de nitratos en muestras de acelga, con el fin de determinar durante dos periodos (invierno y verano de 2012) los niveles de nitratos en esta hortaliza t&iacute;pica y el riesgo toxicol&oacute;gico asociado con este consumo. <br><b>Material y M&eacute;todos:</b> Se valid&oacute; un m&eacute;todo para la determinaci&oacute;n colorim&eacute;trica de nitratos en muestras de acelga basado en la nitraci&oacute;n del &aacute;cido salic&iacute;lico. Una vez validado el m&eacute;todo, se aplic&oacute; para analizar 56 muestras de acelgas del mercado de Huesca (Espa&ntilde;a) recogidas en las temporadas de invierno y verano, y se valor&oacute; el riesgo toxicol&oacute;gico asociado al consumo para la poblaci&oacute;n espa&ntilde;ola adulta e infantil. <br><b>Resultados:</b> El m&eacute;todo fue espec&iacute;fico y robusto para los fines requeridos. Las principales caracter&iacute;sticas del m&eacute;todo fueron: l&iacute;mites de detecci&oacute;n y cuantificaci&oacute;n de 0,29 mg L<sup>-1</sup> y 0,59 mg L<sup>-1</sup>, respectivamente; recuperaciones de 80,0% a 107,4%; y coeficientes de variaci&oacute;n inferiores a 11,4%. El contenido medio de nitratos detectado fue de 2293 mg kg<sup>-1</sup> y s&oacute;lo hubo evidencia de riesgo para los consumidores extremos (adultos y ni&ntilde;os), especialmente en el invierno. <br><b>Conclusiones:</b> Se encontr&oacute; un alto porcentaje de muestras de acelgas con una concentraci&oacute;n considerable de nitratos. Teniendo en cuenta la ingesta diaria estimada de nitratos asociada a ellas, se recomendar&iacute;a establecer un l&iacute;mite reglamentario de nitratos en acelgas ya que es una hortaliza de consumo importante en Espa&ntilde;a.</font></p> <p><font face="Verdana" size="2"><b>Palabras clave:</b> Nitratos; Vegetales; Contaminaci&oacute;n; Ingesta diaria; Riesgo toxicol&oacute;gico.</font></p> <hr size="1"> <p>&nbsp;</p> <p><font face="Verdana" size="2"><b>Introduction</b></font></p> <p><font face="Verdana" size="2">Vegetables constitute the major source of dietary nitrates. The accumulation in plants varies widely between species, and there are several plants that possess higher tendency to accumulate nitrate<sup>1</sup>. Typically, leafy vegetables contain higher nitrate concentrations compared to roots and fruits. The nitrate content in vegetables may be influenced by factors related to the plant (variety, species and maturity), and to the environment (temperature, light intensity, fertilizers, water used, and deficiency of some nutrients)<sup>2</sup>. In this sense, there are many bibliographic references that report higher nitrate content in leafy winter vegetables compared to the summer crops.</font></p> <p><font face="Verdana" size="2">The significance of nitrate to human health derives from the fact that nitrate can be converted in vivo to nitrite which shows toxic effects<sup>3</sup>. In this regard, maximum limit concentrations of nitrate for certain vegetables (lettuce and spinach) are established by the European Union<sup>4</sup>. Nitrate levels in lettuce and spinach have been controlled a long time ago in countries of the European Union and around the World<sup>3,5-7</sup>, but there are few data about chard, one of the most widely consumed vegetables in Spain.</font></p> <p><font face="Verdana" size="2">Many analytical techniques as spectrophotometry, potentiometry, ion chromatography, polarography, capillary electrophoresis and high-performance liquid chromatography have been used for quantification of nitrates in vegetables samples<sup>8</sup>, but many of them have been often lengthy and expensive.</font></p>
<p><font face="Verdana" size="2">Taking into account the above, the aim of this study was the validation of a rapid method for the determination of nitrate in chard samples, a typical vegetable of important consumption in Spain, in order to know, in a fast way, the current levels of nitrate in chard samples marketed in Huesca (Spain) and to determine the toxicological risk associated with this intake.</font></p> <p>&nbsp;</p> <p><font face="Verdana" size="2"><b>Material and methods</b></font></p> <p><font face="Verdana" size="2"><b>Reagents and Instrumentation</b></font></p> <p><font face="Verdana" size="2">Nitrate calibration standard solutions were prepared from a stock solution of 1000 mg L<sup>-1</sup> of nitrate by Panreac (Barcelona, Spain) in distilled water and stored in capped amber vials at 4<sup>o</sup>C. Salicylic acid 99% PS, sodium hydroxide PA-ACS-ISO and sulphuric acid 93-98% were supplied by Panreac (Barcelona, Spain). A separate blank was prepared by mixing 0.8 mL of sulphuric acid concentrated (93-98%), 19 mL of sodium hydroxide 2N and 0.25 mL of distilled water. The absorbance of samples was measured using a double beam UV/Visible scanning Spectrophotometer (Unicam UV/Vis Spectrometer UV2).</font></p> <p><font face="Verdana" size="2"><b>Samples Preparation</b></font></p> <p><font face="Verdana" size="2">The samples were acquired in local markets and large supermarkets of the Huesca region. A sample consisted of 1 kg of vegetable. Samplings were instructed to keep the samples and to take them to the laboratory to be prepared.</font></p> <p><font face="Verdana" size="2">Prior to analysis, non-edible parts of the sample were removed and the whole samples were chopped and frozen, before the analysis, they were homogenized in a blender while frozen. The nitrates content of chard was determined in two different periods (winter and summer). The first sampling was performed from October 1 to March 31, and the second from April 1 to September 30.</font></p> <p><font face="Verdana" size="2"><b>Method validation</b></font></p> <p><font face="Verdana" size="2"><b>Method optimization:</b> The analytical method for the determination of nitrate in plant tissue was described by Cataldo <i>et al</i>.<sup>9</sup> who proposed a colorimetric determination of nitrate in plant tissue by nitration of salicylic acid, after extraction with distilled water, phosphate buffer and centrifugation. Other authors proposed extraction of nitrate, only with hot water<sup>6,10</sup> or methanol/water (30:70)<sup>11</sup>. Based on these works, and in order to get rapid analyses of chard, a simple extraction in distilled water was studied, without centrifugation proposed. Different temperatures and presence of agitation were considered.</font></p>
<p><font face="Verdana" size="2">Absorbance of the complex formed by nitration of salicylic acid is directly proportional to the content of nitrate. Palomino <i>et al</i>.<sup>12</sup> showed the absorption spectrum of the chromophore, in line with this work, two different wavelengths (410 nm and 430 nm) were tested.</font></p> <p><font face="Verdana" size="2"><b>Specificity:</b> On one hand, aqueous calibration curves (n=3) were constructed from several standard solutions at six concentrations of nitrate from 0.5 to 5.0 mg L<sup>-1</sup>; on the other hand, standard addition curves (n=3) were prepared from chard samples spiked from 1.5 to 5.0 mg L<sup>-1</sup>. To verify the absence of interfering substances, the slopes of the aqueous calibration and the standard addition curves were compared by applying an ANOVA test. A <i>p</i>-value &lt; 0.05 was considered statistically significant. The aqueous calibration curves were employed to determine the nitrates level of chard commercial samples, when there were no significant differences.</font></p> <p><font face="Verdana" size="2"><b>Calibration curves:</b> Standard solutions at six concentrations including zero, spaced across the working range (0.5 to mg L<sup>-1</sup>) were processed for six times, and calibration curves were constructed in order to know the linearity of the method. Slope and coefficient values (R) were measured.</font></p> <p><font face="Verdana" size="2"><b>Detection and quantification limits:</b> The detection and quantification limits were determined by analyzing ten blanks, corresponding to mean value plus three times and ten times the standard deviation, respectively.</font></p> <p><font face="Verdana" size="2"><b>Repeatability and Reproducibility:</b> Repeatability and reproducibility of the analytical method were assessed. The analyses of each level of the aqueous calibration curves were performed in triplicate on three successive days, and the coefficient of variation for intra-day and for inter-day assays were valuated. In the same way, repeatability and reproducibility of spiked samples (1.5 to 5.0 mg L<sup>-1</sup>) were analysed.</font></p> <p><font face="Verdana" size="2"><b>Accuracy:</b> For the period in which samples were examined, nitrate reference test materials were no available (spinach, lettuce), so it was decided to fortify real samples. Chard leaves samples were spiked with four different points of fortification, including zero (1.5 to 5.0 mg L<sup>-1</sup>), and subjected to extraction process proposed in this paper. Accuracy was evaluated by the comparison of the theoretical values of the nitrate spiked samples and the values obtained in triplicate. The analytical method was considered accurate if the recovery percentages obtained were within 80-110%<sup>13</sup>.</font></p> <p><font face="Verdana" size="2"><b>Stability:</b> The solution of salicylic acid may be unstable9. In order to check this fact, some extracts of chard samples (n=3) were analysed using the solution prepared just at the moment of analysis and results were compared to those carried out with solutions prepared one week before (n=3). The acceptance criterion was a response between 95% and 105% of the initial one<sup>14</sup>.</font></p> <p><font face="Verdana" size="2"><b>Dietary exposure estimates</b></font></p> <p><font face="Verdana" size="2">The daily intake of nitrate through chard was calculated from the median concentration of nitrate in samples and the weight consumed. In this work, the daily consumption data from Spanish population analyzed (children 7-12 years, adults and extreme consumers) came from the Spanish Food Safety Authority<sup>15</sup>.</font></p> <p>&nbsp;</p>
<p><font face="Verdana" size="2"><b>Results</b></font></p> <p><font face="Verdana" size="2"><b>Validation of Analytical Method</b></font></p> <p><font face="Verdana" size="2">Experimental and instrumental conditions were optimized to get a rapid method to determine nitrate in chard. Two different wavelengths (410 nm and 430 nm) were tested in order to determine the best absorption conditions (<a href="#f1">Figure 1</a>). As can be seen, the complex formed absorbed maximally at 410 nm. The calibration curve obtained at 410 nm presented better sensitive (slope 0.0785 <i>versus</i> 0.0614) and less uncertainty in their values so, it was decided to work at this wavelength.</font></p> <p>&nbsp;</p> <p align="center"><font face="Verdana" size="2"><a name="f1"></a><img src="/img/revistas/renhyd/v19n1/original1_f1.jpg"></font></p> <p>&nbsp;</p> <p><font face="Verdana" size="2">All the changes made to the initial proposed method were shown in <a href="#t1">Table 1</a>. As can be observed, experiments showed better nitrate extraction if samples (fresh or defrosted) were mixed with distilled water, stirred and heated (70<sup>o</sup>C).</font></p> <p>&nbsp;</p> <p align="center"><font face="Verdana" size="2"><a name="t1"></a><img src="/img/revistas/renhyd/v19n1/original1_t1.jpg"></font></p> <p>&nbsp;</p>
<p><font face="Verdana" size="2">The final analysis protocol was as follows. The sample (1.5 g) was weighed and transferred into a 100 mL beaker and 50 mL of distilled water were added. The beaker was placed on a stirred hotplate for 30 minutes without boiling (70<sup>o</sup>C) and finally adjusted up to 50 mL with distilled water in a volumetric flask. After filtration, an aliquot of 0.2 mL was transferred to a test tube and mixed thoroughly with 0.8 mL of salicylic acid 5% (w/v) in sulphuric acid (93-98%). After 20 minutes at room temperature, 19 mL of sodium hydroxide 2N were added to raise the pH above 12. The samples were cooled at room temperature and absorbance was measured at 410 nm.</font></p> <p><font face="Verdana" size="2">Specificity study was shown in <a href="#f2">Figure 2</a>. The slopes of both, aqueous calibration curves (standard solutions of nitrate from 0.5 to 5.0 mg L<sup>-1</sup>), and standard addition curves (extracts of chard samples spiked from 1.5 to 5.0 mg L<sup>-1</sup>), were compared by applying an ANOVA test, there were no statistically significant differences between slopes (<i>p</i> &gt; 0.05) so, no matrix effect was observed.</font></p> <p>&nbsp;</p> <p align="center"><font face="Verdana" size="2"><a name="f2"></a><img src="/img/revistas/renhyd/v19n1/original1_f2.jpg"></font></p> <p>&nbsp;</p> <p><font face="Verdana" size="2">The detection and quantification limits (mean plus three times and ten times the standard deviation), were 0.29 mg L<sup>-1</sup> (967 mg kg<sup>-1</sup>) and 0.59 mg L<sup>-1</sup> (1833 mg kg<sup>-1</sup>), respectively.</font></p> <p><font face="Verdana" size="2">Repeatability and reproducibility of the analytical method were assessed. The analyses of each level of the aqueous calibration curves in triplicate on three successive days showed coefficient of variation values from 0.5% to 5.4% for intra-day and from 0.7% to 11.4% for inter-day assays. In the same way, spiked samples (1.5 to 5.0 mg L<sup>-1</sup>) were analysed, and these values were from 0.2% to 4.6% and from 1.7% to 8.7%, respectively (<a href="#t2">Table 2</a>). All coefficient of variation were lower than 15% <sup>13</sup>.</font></p> <p>&nbsp;</p> <p align="center"><font face="Verdana" size="2"><a name="t2"></a><img src="/img/revistas/renhyd/v19n1/original1_t2.jpg"></font></p> <p>&nbsp;</p>
<p><font face="Verdana" size="2">The accuracy study showed recovery percentages from 80.0% to 107.4%, and a degradation phenomenon was observed during storage of one week at 20<sup>o</sup>C in darkness, with a response of 86.1% of the initial one.</font></p> <p><font face="Verdana" size="2"><b>Analysis of commercial samples</b></font></p> <p><font face="Verdana" size="2"><a href="/img/revistas/renhyd/v19n1/original1_t3.jpg" target="_blank">Table 3</a> shows the nitrate contents in 56 samples collected in winter and summer seasons and marketed in Huesca, Spain. To calculate the content of nitrate in chard samples, they were taken into account the dilution carried out on the extract (1:100), the volume of extract prepared (50 mL) and the weight of sample used (1.5 g). Samples with an absorbance signal less than detection limit were classified as samples with nitrate content equal to 967 mg kg<sup>-1</sup> (<i>worst case</i>) and samples with an absorbance signal less than quantification limit, equal to 1833 mg kg<sup>-1</sup> (<i>worst case</i>).</font></p> <p><font face="Verdana" size="2">The 56 samples analysed presented a mean and a median nitrate content of 2293 mg kg<sup>-1</sup> and 1833 mg kg<sup>-1</sup>, respectively. These values were 2399 mg kg<sup>-1</sup> and 1930 mg kg<sup>-1</sup>, for samples cultivated in winter, and 2186 mg kg<sup>-1</sup> and 967 mg kg<sup>-1</sup> for summer crops.</font></p> <p><font face="Verdana" size="2">Taking into account the existing regulatory limits, these values were, in all cases, below to the maximum limits established by the European Commission for similar vegetables (<i>Spinacia oleracea</i>), 3000 mg kg<sup>-1</sup> and 2500 mg kg<sup>-1</sup> for winter and summer, respectively. However, 15 samples (26.8%) exceeded these values, seven winter samples (25.0%) and eight summer samples (28.6%).</font></p> <p><font face="Verdana" size="2"><b>Dietary exposure estimates</b></font></p> <p><font face="Verdana" size="2">The estimated daily intake (EDI) of nitrate through chard is shown in <a href="/img/revistas/renhyd/v19n1/original1_t4.jpg" target="_blank">Table 4</a>.</font></p> <p><font face="Verdana" size="2">Considering an acceptable daily intake (ADI) for nitrate of 3.7 mg kg<sup>-1</sup> (body weight) day for a 60 kg adult<sup>16</sup>, the nitrate daily intake through chard collected in winter was unacceptable only for extreme consumers, with a relationship EDI/ADI of 107.3% for children and 90.3% for adults. When samples were collected in summer, risk decreased (53.8% and 45.1% for children and adults). No risk was observed for children and adult mean consumers (1.9% and 4.1% for summer and winter period, respectively).</font></p> <p>&nbsp;</p> <p><font face="Verdana" size="2"><b>Discussion</b></font></p>
<p><font face="Verdana" size="2">These results revealed the existence in the Spanish market of a high percentage of chard samples with a considerable concentration of nitrate (Mean and median nitrate content of 2293 mg kg<sup>-1</sup> and 1833 mg kg<sup>-1</sup>, respectively). According these results, other studies performed in Spain, noted the existence of chard contaminated with similar levels of nitrate. Pardo-Mar&iacute;n <i>et al</i>.<sup>17</sup> determined the presence of nitrate in chard by means of liquid chromatography obtained a median nitrate content of 1597 mg kg<sup>-1</sup>. According to other revisions, chard presented similar or even higher nitrate content compared to other vegetables. Mor <i>et al</i>.<sup>3</sup> showed a mean nitrate content of 1132 mg kg<sup>-1</sup> for spinach and 1439 mg kg<sup>-1</sup> for lettuce marketed in Turkey. Meanwhile, Tamme <i>et al</i>.<sup>7</sup> showed mean nitrate levels of 2337 mg kg<sup>-1</sup> and 3023 mg kg<sup>-1</sup> for spinach and lettuce in Estonia. The median nitrate content in green salads, spinach and lettuce included in the Italian diet were 1720 mg kg<sup>-1</sup>, 1954 mg kg<sup>-1</sup> and 1440 mg kg<sup>-1</sup> respectively<sup>5</sup>, and 2684 mg kg<sup>-1</sup> and 1747 mg kg<sup>-1</sup> in lettuces and spinach from Sweden<sup>6</sup>.</font></p> <p><font face="Verdana" size="2">As can be seen in this study, chard samples collected in winter accumulated more amount of nitrate than those collected in summer. The influence of seasonal variation of nitrate contents in leafy vegetables has been documented in literature. The lettuce and spinach from Estonian market had a 22% and 24% over nitrate levels when grown in winter than in summer<sup>7</sup>. Lettuces grown in UK, showed a mean nitrate level of 3124 mg kg<sup>-1</sup> and 2382 mg kg<sup>-1</sup> during winter and summer months respectively<sup>18</sup>. In Spain, spinach analyzed during winter, showed median concentration levels of nitrate in the order of 1755 mg kg<sup>-1</sup> <i>versus</i> 1269 mg kg<sup>-1</sup> for spinach collected in summer<sup>17</sup>.</font></p> <p><font face="Verdana" size="2">Regarding the dietary exposure estimates, these results were similar to other Spanish data. The mean consumption of chard of Valencia market supposed a nitrate daily intake of 3.5% of the ADI, in case of adult consumers, and 1.7% for children. The EDI for extreme consumers was 78.9% of the ADI<sup>17</sup>.</font></p> <p>&nbsp;</p> <p><font face="Verdana" size="2"><b>Conclusions</b></font></p> <p><font face="Verdana" size="2">The method for analysis of nitrate in chard explained in this paper was specific, stable, robust, precise and accurate, and the sample preparation procedure took less than one hour, so this analytical method could be a low cost and rapid procedure to determine nitrate in chard.</font></p> <p><font face="Verdana" size="2">In the Spanish market, there were chard samples with similar or even higher nitrate levels compared to other leafy vegetables (according to other revisions), and there were evidence of risk for extreme consumers in winter period.</font></p> <p><font face="Verdana" size="2">Although this study is focused on the area of Huesca, and the samples analyzed were not nationally representative, the authors conclude that there may be a toxicological risk associated with the consumption of chard, and it could be recommended to establish a regulatory limit of nitrate to chard, as well as for other vegetables of important consumption in Europe.</font></p> <p>&nbsp;</p> <p><font face="Verdana" size="2"><b>Competing interests</b></font></p>
<p><font face="Verdana" size="2">None of the authors had any conflict of interest from a financial, personal, or professional aspect in relation to the findings of this study.</font></p> <p>&nbsp;</p> <p><font face="Verdana" size="2"><b>Bibliography</b></font></p> <!-- ref --><p><font face="Verdana" size="2">1. Hmelak Gorenjak A, Cenci&#269; A. Nitrate in vegetables and their impact on human health. A review. Acta Aliment. 2013; 42(2): 158-72. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179086&pid=S2174-5145201500110000200001&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">2. Rytel E, Lisi&#324;ska G, Tajner-Czopek A. Toxic compound levels in potatoes are dependent on cultivation methods. Acta Aliment. 2013; 42(3): 308-17. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179088&pid=S2174-5145201500110000200002&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">3. Mor F, Sahindokuyucu F, Erdogan N. Nitrate and nitrite contents of some vegetables consumed in south province of Turkey. J Anim Vet Adv. 2010; 9(15): 2013-6. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179090&pid=S2174-5145201500110000200003&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">4. Official Journal. Regulation 1881/2006/EC of the Commission of December 19. Official Journal European Communities L364. 2006: 5-24. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179092&pid=S2174-5145201500110000200004&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">5. De Martin S, Restani P. Determination of nitrates by a novel ion chromatographic method: occurrence in leafy vegetables (organic and conventional) and exposure assessment for Italian consumers. Food Addit Contam. 2003; 20(9): 787-92. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179094&pid=S2174-5145201500110000200005&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">6. Merino L, Darnerud O, Edberg U, Aman P, Castillo MDP. Levels of nitrate in Swedish lettuce and spinach over the past 10 years. Food Addit Contam. 2006; 23(12): 1283-9. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179096&pid=S2174-5145201500110000200006&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">7. Tamme T, Reinik M, Roasto M, Merema K, Kiis A. Nitrate in leafy vegetables, culinary herbs, and cucumber grown under cover in Estonia: content and intake. Food Addit Contam Part B Surveill. 2010; 3(2): 108-13. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179098&pid=S2174-5145201500110000200007&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">8. Prasad S, Chetty AA. Nitrate-N determination in leafy vegetables: Study of the effects of cooking and freezing. Food Chem. 2008; 106(2): 772-80. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179100&pid=S2174-5145201500110000200008&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">9. Cataldo DA, Haroon M, Schrander LE, Youngs VL. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plan. 1975; 6(1): 71-80. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179102&pid=S2174-5145201500110000200009&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">10. Reinik M, Tamme T, Roasto M, Juhkam K, Jurtsenko S, Tenno T, et al. Nitrites, nitrates and N-nitrosoamines in Estonian cured meat products: Intake by Estonian children and adolescents. Food Addit Contam. 2005; 22(11): 1098-105. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179104&pid=S2174-5145201500110000200010&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">11. Official Journal. Regulation 1882/2006/EC of the Commission of December 19. Official Journal European Communities L364. 2006: 25-31. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179106&pid=S2174-5145201500110000200011&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">12. Palomino F, Rojas M, Beltran M. Nueva t&eacute;cnica colorim&eacute;trica para la determinaci&oacute;n de nitratos en el plasma. Revista de la Facultad de Medicina, Universidad Nacional de Colombia. 1997; 45(2): 63-9. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179108&pid=S2174-5145201500110000200012&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">13. Official Journal. Decision 2002/657/EC of the Commission of August 12. Official Journal European Communities L221. 2002: 8-36. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179110&pid=S2174-5145201500110000200013&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">14. Samanidou VF, Nikolaidou KI, Papadoyannis IN. Development and validation of an HPLC confirmatory method for the determination of seven tetracycline antibiotics residues in milk according to the European Union Decision 2002/657/EC. J Sep Sci. 2007; 30(15): 2430-9. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179112&pid=S2174-5145201500110000200014&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">15. Agencia Espa&ntilde;ola de Seguridad Alimentaria y Nutrici&oacute;n, AESAN. Modelo de dieta espa&ntilde;ola para la determinaci&oacute;n de la exposici&oacute;n del consumidor a sustancias qu&iacute;micas. <a href="http://www.aesan.msc.es/AESAN/docs/docs/notas_prensa/modelo_dieta_espanola.pdf" target="_blank">www.aesan.msc.es/AESAN/docs/docs/notas_prensa/modelo_dieta_espanola.pdf</a> (accessed: 25/10/2013). &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179114&pid=S2174-5145201500110000200015&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">16. EU Scientific Committee for Food. Opinion on nitrate and nitrite of September 22. Annex 4 to document III/56/95, CS/CNTM/NO3/20-FINAL. European Commission DG III, Brussels, 1995. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179116&pid=S2174-5145201500110000200016&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">17. Pardo-Mar&iacute;n O, Yusa V, Villalba P, Perez JA. Monitoring programme on nitrates in vegetables and vegetable-based baby foods marketed in the Region of Valencia, Spain: levels and estimated daily intake. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010; 27(4): 478-86. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179118&pid=S2174-5145201500110000200017&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <!-- ref --><p><font face="Verdana" size="2">18. Ysart G, Clifford R, Harrison N. Monitoring for nitrate in UK grown lettuce and spinach. Food Addit Contam. 1999; 16(7): 301-6. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[&#160;<a href="javascript:void(0);" onclick="javascript: window.open('/scielo.php?script=sci_nlinks&ref=4179120&pid=S2174-5145201500110000200018&lng=','','width=640,height=500,resizable=yes,scrollbars=1,menubar=yes,');">Links</a>&#160;]<!-- end-ref --></font></p> <p>&nbsp;</p>
<p>&nbsp;</p> <p><font face="Verdana" size="2"><a href="#top"><img border="0" src="/img/revistas/renhyd/v19n1/seta.gif" width="15" height="17"></a><a name="bajo"></a><b>Correspondence:</b> <br>* <a href="mailto:smenal@unizar.es">smenal@unizar.es</a></font></p> <p><font face="Verdana" size="2">Received: 06/06/2014. <br>Accepted: 12/01/2015.</font></p>
References
1. Hmelak Gorenjak, A. Cenci&#269;, A. Nitrate in vegetables and their impact on human health: A review. Acta Aliment 2013 42(2)
2. Rytel, E. Lisi&#324;ska, G. Tajner-Czopek, A. Toxic compound levels in potatoes are dependent on cultivation methods. Acta Aliment 2013 42(3)
3. Mor, F. Sahindokuyucu, F. Erdogan, N. Nitrate and nitrite contents of some vegetables consumed in south province of Turkey. J Anim Vet Adv 2010 9(15)
4. Official Journal. Regulation 1881/2006/EC of the Commission of December 19. Official Journal European Communities 2006 (L364)
5. De Martin, S. Restani, P. Determination of nitrates by a novel ion chromatographic method: occurrence in leafy vegetables (organic and conventional) and exposure assessment for Italian consumers. Food Addit Contam 2003 20(9)
6. Merino, L. Darnerud, O. Edberg, U. Aman, P. Castillo, M. Levels of nitrate in Swedish lettuce and spinach over the past 10 years. Food Addit Contam 2006 23(12)
7. Tamme, T. Reinik, M. Roasto, M. Merema, K. Kiis, A. Nitrate in leafy vegetables, culinary herbs, and cucumber grown under cover in Estonia: content and intake. Food Addit Contam Part B Surveill 2010 3(2)
8. Prasad, S. Chetty, AA. Nitrate-N determination in leafy vegetables: Study of the effects of cooking and freezing. Food Chem 2008 106(2)
9. Cataldo, DA. Haroon, M. Schrander, LE. Youngs, VL. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plan 1975 6(1)
10. Reinik, M. Tamme, T. Roasto, M. Juhkam, K. Jurtsenko, S. Tenno, T. Nitrites, nitrates and N-nitrosoamines in Estonian cured meat products: Intake by Estonian children and adolescents. Food Addit Contam 2005 22(11)
11. Official Journal. Regulation 1882/2006/EC of the Commission of December 19. Official Journal European Communities 2006 (L364)
12. Palomino, F. Rojas, M. Beltran, M. Nueva técnica colorimétrica para la determinación de nitratos en el plasma. Revista de la Facultad de Medicina, Universidad Nacional de Colombia 1997 45(2)
13. Official Journal. Decision 2002/657/EC of the Commission of August 12. Official Journal European Communities 2002 (L221)
14. Samanidou, VF. Nikolaidou, KI. Papadoyannis, IN. Development and validation of an HPLC confirmatory method for the determination of seven tetracycline antibiotics residues in milk according to the European Union Decision 2002/657/EC. J Sep Sci 2007 30(15)
15. Agencia Española de Seguridad Alimentaria y Nutrición, AESAN. Modelo de dieta española para la determinación de la exposición del consumidor a sustancias químicas.
16. EU^dScientific Committee for Food. Opinion on nitrate and nitrite of September 22: Annex 4 to document III/56/95, CS/CNTM/NO3/20-FINAL. Brussels : European Commission DG III; 1995.
17. Pardo-Marín, O. Yusa, V. Villalba, P. Perez, JA. Monitoring programme on nitrates in vegetables and vegetable-based baby foods marketed in the Region of Valencia, Spain: levels and estimated daily intake. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010 27(4)
18. Ysart, G. Clifford, R. Harrison, N. Monitoring for nitrate in UK grown lettuce and spinach. Food Addit Contam 1999 16(7)

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c)



  

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional.

Política de privacidad de la revista

Esta revista ha conseguido la validación para ser Data Provider OAI-PMH version 2.0 de Open Archives Initiative (OAI)



ISSN (online): 2174-5145 / ISSN (print): 2173-1292

Abreviatura: Rev Esp Nutr Hum Diet

DOI revista: 10.14306/renhyd

 

 

Facebook: https://www.facebook.com/renhyd

 

Twitter: https://twitter.com/renhyd_org (@renhyd_org)

 

 

Bases de datos bibliográficas en las que está indexada:

Índices de Evaluación relativa de la Revista: 
  • CiteScore (Scopus - 2019): 0.5 (percentil 19, posición 241/299 en "Food Science"; percentil 10, posición 108/120 en "Nutrition and Dietetics") (link)
  • SJR (SCImago Journal Rank, Scopus - 2019): 0.149 (cuartil 4, posición 264/327 en "Food Science y posición 111/128 en "Nutrition and Dietetics) (link)
  • Índice H (Scopus): 9 (link)
  • REDIB (Red Iberoamericana de Innovación y Conocimiento Científico - 2019): percentil de factor de impacto = 68.147 (posición 296/1070) (link)
Evaluación de Calidad Editorial de la Revista:
Difusión en Repositorios y Portales de Revistas OpenAccess: 

 Citaciones recibidas y realizadas, artículos más consultados

 

 

 

 

Cooperación entre revistas iberoamericanas de nutrición humana:

Perspectivas en Nutrición Humana